BetA, Betulinic acid: Click to Expand ⟱
Features:
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.
-Betulinic acid is a naturally occurring pentacyclic triterpenoid
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg
-half-life reports vary 3-5 hrs?.
BioAv -hydrophobic molecule with relatively poor water solubility.

Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT">STAT, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
2754- BetA,    Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors
- in-vitro, Pca, LNCaP
VEGF↓, betulinic acid decreases expression of vascular endothelial growth (VEGF)
survivin↓, and the antiapoptotic protein survivin
Sp1/3/4↓, betulinic acid acts as a novel anticancer agent through targeted degradation of Sp proteins that are highly overexpressed in tumors.
Casp↑, Betulinic acid also induced caspase-dependent PARP cleavage in LNCaP cells, and this was accompanied by decreased expression of the antiapoptotic protein survivin
PARP↑,
survivin↓,
angioG↓, betulinic acid also induces proapoptotic and antiangiogenic responses in LNCaP cells as evidenced by decreased expression of VEGF and survivin and activation of caspase-dependent PARP cleavage

2741- BetA,    Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress
- in-vitro, GC, SNU16 - in-vitro, GC, NCI-N87 - in-vivo, NA, NA
TumCG↓, BA had significant cytotoxic and inhibitory effects on GC cells in a dose- and time-dependent manner.
TumCMig↓, BA inhibited the migratory and invasive abilities of SNU-16 cells
TumCI↓,
N-cadherin↓, relative expression level of N-cadherin in SNU-16 cells was drastically down-regulated, and the expression of E-cadherin in SNU-16 cells was distinctly up-regulated in comparison to that in the control group, implying a break in the EMT process.
E-cadherin↑,
EMT↓,
Ki-67↓, proportions of Ki-67-positive and MMP2-positive cells were significantly lower in the tumour sections of the BA-treated group than those in the sections of the control group
MMP2↓,

2742- BetA,    Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models
- in-vitro, BC, MDA-MB-231 - in-vivo, BC, 4T1 - in-vitro, BC, MCF-7
tumCV↓, BA decreased the viability of three breast cancer cell lines and markedly impaired cell migration and invasion
TumCMig↓,
TumCI↓,
STAT3↑, BA could inhibit the activation of stat3 and FAK which resulted in a reduction of matrix metalloproteinases (MMPs)
FAK↓,
MMPs↓,
MMP2↓, BA treatment decreased the expression of MMP-2 and MMP-9 while increased the expression of TIMP-2 in 4T1 and MDA-MB-231 cells.
MMP9↓,
TIMP2↑,

2743- BetA,    Betulinic acid and the pharmacological effects of tumor suppression
- Review, Var, NA
ROS↓, BA improves the level of reactive oxygen species (ROS) production and alters the mitochondrial membrane potential gradient, followed by the release of cytochrome c (Cyt c), which causes the mitochondrial-mediated apoptosis of tumor cells via a caspas
MMP↓,
Cyt‑c↑,
Apoptosis↑,
TumCCA↑, BA can inhibit cancer cell growth and proliferation via cell cycle arrest
Sp1/3/4↓, BA, can inhibit the protein expression of Sp1, Sp2 and Sp4 through the microRNA (miR)-27a-ZBTB10-Sp1 axis
STAT3↓, BA can downregulate the activation of STAT3 through the upregulation of Src homology 2 domain-containing phosphatase 1 (SHP-1)
NF-kB↓, NF-κB can be inhibited by reducing the activation of inhibitor of NF-κB (IκBα) kinase (IKKβ) and phosphorylation of IκBα with BA
EMT↓, nvasion and metastasis of malignancies is prevented via epithelial-mesenchymal transition (EMT) and inhibition of topoisomerase I
TOP1↓,
MAPK↑, BA leads to the activation, via phosphorylation, of pro-apoptotic MAPK proteins, P38 and SAP/JNK, the formation of ROS and the upregulation of caspase
p38↑,
JNK↑,
Casp↑,
Bcl-2↓, BA downregulates Bcl-2 and upregulates the Bax gene in HeLa cell lines
BAX↑,
VEGF↓, BA can decrease the expression of VEGF via Sp proteins, thus having an antiangiogenic role
LAMs↓, BA suppresses the expression of lamin B1 in pancreatic cancer cells

2744- BetA,    Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential
- Review, Var, NA
Apoptosis↓, Various studies have demonstrated that BE is able to induce apoptosis in numerous cancer cell lines (
TumCCA↑, 10 uM concentration, BE arrests cell cycle of murine melanoma B164A5 cells in S phase.
Casp9↑, BE is involved in the sequential activation of caspase-9, caspases 3 and 7, and cleaving of poly(ADP-ribose) polymerase (PARP) (Potze et al. 2014).
Casp3↑,
Casp7↑,
cl‑PARP↑,
MMP↓, mitochondrial membrane potential loss (Li et al. 2010; Potze et al. 2014).
ROS↑, increased reactive oxygen species (ROS) production
TOP1↓, BA was also shown to inhibit the proliferation of topoisomerases and therefore express anti-proliferative activity
NF-kB↓, BA was demonstrated to inhibit activating of NF-kB

2745- BetA,    Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors
- in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vivo, NA, NA
Apoptosis↑, BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft
TumCG↓,
Sp1/3/4↓, BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells
survivin↓, decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1.
VEGF↓,
p65↓,
EGFR↓,
cycD1↓,
ROS↑, due to induction of reactive oxygen species (ROS),
MMP↓, BA decreases MMP and induces ROS in RKO cells.

2746- BetA,    Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, CRC, NA
TumCG↓, BA inhibited colorectal cancer cell lines in vitro with a time-dependent and dose-dependent manner.
BAX↑, upregulating expression of Bax and cleaved caspase-3 and downregulating protein of Bcl-2
Bcl-2↓,
ROS↑, BA could increase the production of reactive oxygen species and reduce mitochondrial membrane potential of cancer cell, suggesting that BA induced cancer cells apoptosis by mitochondrial mediated pathways
MMP↓,
TIMP2↑, BA significantly inhibited the migration and invasion of colorectal cancer cells, reduced the expression of matrix metalloproteinase (MMPs) and increased the expression of MMPs inhibitor (TIMP-2).
TumVol↓,

2747- BetA,    Betulinic acid, a natural compound with potent anticancer effects
- Review, Var, NA
selectivity↑, potently effective against a wide variety of cancer cells, also those derived from therapy-resistant and refractory tumors, whereas it has been found to be relatively nontoxic for healthy cells
Cyt‑c↑, induces Bax/Bak-independent cytochrome-c release.
*toxicity↓, In general, BetA is concluded to be less toxic to cells from healthy tissues.
TOP1↓, topoisomerase I/II
NF-kB↓, transcription factor NF-kB
ROS↑, Consistently, in glioma cells BetA-induced ROS generation
RadioS↑, Treatment with BetA in combination with irradiation resulted in additive growth inhibition of melanoma cells.
ChemoSen↑, BetA cooperated with anticancer drugs, doxorubicin and etoposide, to induce apoptosis and to inhibit clonogenic survival in SHEP neuroblastoma cells

2748- BetA,    Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy
- Review, Var, NA
Bcl-2↓, Cell death stimuli activate prodeath BCL-2 family proteins that in turn permeabilize mitochondrial outer membrane, thereby resulting in the release of Cyt C
MMP↓,
Cyt‑c↑,
Casp↑, Smac (second mitochondria-derived activator of caspase)/DIABLO (direct inhibitor of apoptosis [IAP] binding protein with low pI), and AIF (apoptosis-inducing factor) into the cytoplasm (27
Diablo↑,
AIF↑,
angioG↓, BetA's inhibition of growth-factor-induced angiogenesis seems at least partially owing to modulation of mitochondrial function in endothelial cells
BioAv↓, Current methods of conventional drug delivery using oral liquids or tablets are generally inefficient, with poor biodis- tribution, low solubility, long-term toxicity, and limited drug efficacy due to partial biodegradation, swelling, and ero- sion
NF-kB↓, BetA treatment inhibits the activation of NF-kB

2749- BetA,    Anti-Inflammatory Activities of Betulinic Acid: A Review
- Review, Nor, NA
Inflam↓, betulinic acid as a promissory lead compound with anti-inflammatory activity
*NO↓, BA can inhibit the production of NO, mainly in macrophages cultures stimulated with bacterial lipopolysaccharide (LPS) and/or interferon gamma (IFN-ɣ)
*IL10↑, (BA) has a broad-spectrum anti-inflammatory activity, significantly increasing IL-10 production, decreasing ICAM-1, VCAM-1, and E-selectin expression and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB),
*ICAM-1↓,
*VCAM-1↓,
*E-sel↓,
*NF-kB↓,
*IKKα↓, BA blocks the NF-κB signaling pathway by inhibiting IκB phosphorylation and d
*COX2↓, BA also inhibits cyclooxygenase-2 (COX-2) activity and, therefore, decrease prostaglandin E2 (PGE2) synthesis
*PGE2↓,
*IL1β↓, The production of critical pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, IL-12, and TNF, is also decreased by BA treatment
*IL6↓,
*IL8↓,
*IL12↓,
*TNF-α↑,
*HO-1↑, induction of HO-1 enzyme activity is associated with the anti-inflammatory effect of BA, since SnPP, an inhibitor of HO-1, promoted a partial reversal of BA’s effect on NF-κB activity,
*IL10↑, BA also increased the amount of IL-10, a well-known anti-inflammatory cytokine
*IL2↓, decreasing the production of pro-inflammatory cytokines, such as IL-2, IL-6, IL-17, and IFN-γ
*IL17↓,
*IFN-γ↓,
*SOD↑, BA decreased the production of the inflammatory mediators described above at the inflammation site and increased enzyme activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GRd) in the liver
*GPx↑,
*GSR↑,
*MDA↓, BA decreased malondialdehyde (MDA) levels, a key mediator of oxidative stress and widely used as a marker of free radical mediated lipid peroxidation injury, at the inflammation site
*MAPK↓, BA downregulates MAPK signaling pathways (ERK1/2, JNK, and p38) in the paw edema tissue, which, in part, explains the inhibition of cytokine production (IL-1β and TNF), COX-2 expression, and PGE2 production (Figure 3).

2750- BetA,  GEM,    Betulinic acid, a major therapeutic triterpene of Celastrus orbiculatus Thunb., acts as a chemosensitizer of gemcitabine by promoting Chk1 degradation
- in-vitro, PC, Bxpc-3 - in-vitro, Lung, H1299
CHK1↓, Betulinic acid destabilized Chk1 protein and conferred chemopotentiating effects of gemcitabine in vitro and in vivo
ChemoSen↑,
tumCV↓, A combination therapy of gemcitabine with betulinic acid produced synergistic pharmacologic interaction on cell viability, apoptosis and DNA double-strand breaks.
Apoptosis↑,
DNAdam↑,

2751- BetA,    Betulinic acid inhibits proliferation and triggers apoptosis in human breast cancer cells by modulating ER (α/β) and p53
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
tumCV↓, After BA treatment, the cell viability of MCF-7 and MDA-MB-231 significantly reduced as early as the minimal concentration of 2.5 μM BA at both 24 and 48 h
ER-α36↓, Upon treating the cells with BA, the expression levels of ERα in MCF-7 and MDA-MB-231 significantly decreased in all BA concentrations, particularly in the highest one of 30 μM

2752- BetA,    Betulinic acid: a natural product with anticancer activity
- Review, Var, NA
selectivity↑, nontransformed cells of different origin, e.g., fibroblasts, melanocytes, neuronal cells and peripheral blood lymphocytes, have been reported to be much more resistant to the cytotoxic effect of BA than cancer cells
ChemoSen↑, BA was found to cooperate with various chemotherapeutic drugs, including doxorubicin, etoposide, cisplatin, taxol, and actinomycin D, to induce apoptosis and to inhibit clonogenic survival of tumor cells
RadioS↑, These reports suggest that using BetA as sensitizer in chemotherapy-, radiotherapy-, or TRAIL-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy.
MMP↓, BA directly induces loss of mitochondrial membrane potenti
cl‑Casp3↑, BA, induced cleavage of both caspases-8 and -3 in cytosolic extracts.
Cyt‑c↑, cytochrome c, released from mitochondria undergoing BA-mediated permeability transition, activated caspase-3 but not caspase-8 in a cell-free system.
ROS↑, Cleavage of caspases-3 and -8 was preceded by disturbance of mitochondrial membrane potential and by generation of reactive oxygen species (ROS).
NF-kB↑, BA is a potent activator of NF-kB in a variety of tumor cell lines.
TOP1↓, BA blocks the catalytic activity of topoisomerase I by abrogating the inter- action of the enzyme and the DNA substrate

2753- BetA,    Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells
- in-vitro, Cerv, HeLa
PI3K↓, BA treatment acted through downregulating a phosphatidylinositol 3-kinase (PI3K) subunit and suppressing the Akt phosphorylation at Thr308 and Ser473 after increasing the generation of intracellular reactive oxygen species
p‑Akt↓,
ROS↑,
TumCCA↑, BA induced cell cycle arrest at the G0/G1 phase, which was consistent with the cell cycle-related protein results in which BA significantly enhanced the expression of p27Kip and p21Waf1/Cip1 in HeLa cells.
p27↑,
P21↑,
mt-Apoptosis↑, mitochondrial apoptosis, as reflected by the increased expression of Bad and caspase-9
BAD↑,
Casp9↑,
MMP↓, decline in mitochondrial membrane potential.
eff↓, preincubation of the cells with glutathione (antioxidant) blocked the process of apoptosis, prevented the phosphorylation of downstream substrates.

2740- BetA,    Effects and mechanisms of fatty acid metabolism-mediated glycolysis regulated by betulinic acid-loaded nanoliposomes in colorectal cancer
- in-vitro, CRC, HCT116
TumCP↓, BA-NLs significantly suppressed the proliferation and glucose uptake of CRC cells by regulating potential glycolysis and fatty acid metabolism targets and pathways, which forms the basis of the anti-CRC function of BA-NLs.
Glycolysis↓,
HK2↓, HK2, PFK-1, PEP and PK isoenzyme M2 (PKM2) in glycolysis, and of ACSL1, CPT1a and PEP in fatty acid metabolism, were blocked by BA-NLs, which play key roles in the inhibition of glycolysis and fatty acid-mediated production of pyruvate and lactate.
PFK1↓,
PKM2↓,
ACSL1↓,
CPT1A↓,
FASN↓,
FAO↓, Significant reduction of FAO was detected in BA-NL-treated HCT116 cells
GlucoseCon↓, glucose uptake in HCT116 cells was significantly decreased by BA-NLs
lactateProd↓, lactic acid secretion was significantly suppressed in HCT116 cells treated with BA-NLs

2755- BetA,    Cytotoxic Potential of Betulinic Acid Fatty Esters and Their Liposomal Formulations: Targeting Breast, Colon, and Lung Cancer Cell Lines
- in-vitro, Colon, HT29 - in-vitro, BC, MCF-7 - in-vitro, Lung, H460
eff↑, BA-Lip exerted stronger cytotoxic effects than the parent compound,
Casp3↑, BA’s fatty esters and their respective liposomal formulations facilitated apoptosis in cancer cells by inducing nuclear morphological changes and increasing caspase-3/-7 activity.
Casp7↑,
NF-kB↓, BA antiproliferative effects against U87MG and A172 glioblastoma cells revealing the downregulation of the NF-κB pathway and upregulation of caspase-3 and -9, thus suggesting that apoptosis occurred through mitochondria-mediated mechanisms

2756- BetA,    Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway
- in-vitro, HCC, HUH7 - in-vitro, HCC, H1299
TumCP↓, betulinic acid could suppress proliferation and migration of hepatoma cells, raised ROS level and inhibited antioxidation level in cells
ROS↓,
antiOx↓,
TumCG↓, These findings indicate that betulinic acid has the capacity to significantly impede hepatoma cells growth and migration
TumCMig↓,
NRF2↓, The expression of antioxidant proteins Nrf2, GPX4 and HO-1 was also considerably lower in the BETM and BETH groups than in the Control group
GPx4↓,
HO-1↓,
NCOA4↑, suggesting that betulinic acid activates ferritinophagy by boosting NCOA4 expression and FTH1 degradation.
FTH1↓, betulinic acid groups (10 mg/kg, 20 mg/kg, and 40 mg/kg) greatly boosted LC3II and NCOA4 expressions and suppressed FTH1
Ferritin↑, In summation, betulinic acid decreases antioxidation in tumour tissues from nude mice, inhibits ferritin expression, enhances the expression of ferritinophagy-associated protein, activates ferritinophagy, and initiates ferroptosis in tumour cells.
Ferroptosis↑,
GSH↓, In comparison to the Control group, the betulinic acid groups (10 mg/kg, 20 mg/kg and 40 mg/kg) reduced dramatically GSH and hydroxyl radical inhibition capacity in serum, considerably increased serum Fe2+), and decreased dramatically serum MDA
MDA↓,

2757- BetA,    Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways
- in-vitro, GBM, U251
tumCV↓, BA reduced viability; inhibited colony formation, migration, and invasion; and triggered apoptosis.
TumCMig↓,
TumCI↓,
Apoptosis↑,
p‑PI3K↓, BA administration decreased the levels of phosphorylated PI3K and AKT.
p‑Akt↓,
Ferroptosis↑, BA-induced ferroptosis and HO-1 and NRF2 levels were increased
HO-1↑,
NRF2↑,

2758- BetA,    Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway
- in-vivo, Nor, NA
*ROS↓, protective effects and mechanisms of BA in blocking oxidative stress caused by acute exposure to T-2 toxin in the thymus of mice was studied.
*MDA↓, BA pretreatment reduced ROS production, decreased the MDA content, and increased the content of IgG in serum and the levels of SOD and GSH in the thymus.
*SOD↑,
*GSH↑,
*p‑p38↓, BA downregulated the phosphorylation of the p38, JNK, and ERK proteins, while it upregulated the expression of the Nrf2 and HO-1 proteins in thymus tissues.
*p‑JNK↓,
*p‑ERK↓,
*NRF2↑,
*HO-1↑,
*MAPK↓, suppressing the MAPK signaling pathway.
*heparanase↑, BA also showed protective activities against alcohol-induced liver damage and dexamethasone-induced spleen and thymus oxidative damage, and these protective effects were related to the antioxidant capacity of BA
*antiOx↑, BA Increased T-2 Toxin-Induced Thymus Antioxidative Capacity

2759- BetA,    Chemopreventive and Chemotherapeutic Potential of Betulin and Betulinic Acid: Mechanistic Insights From In Vitro, In Vivo and Clinical Studies
- Review, Var, NA
chemoP↑, chemopreventive and chemotherapeutic effects of betulin and betulinic acid by presenting in vitro, in vivo
ChemoSen↑,
*Inflam↓, right side depicts anti-inflammatory effect by suppressing proinflammatory mediators
*NRF2↑, boosting NRF2 (antioxidant/anti-inflammatory).
*NF-kB↓, suppressing proinflammatory mediators (NF-κB and COX)
*COX2↓,
ROS↑, By rapidly increasing the generation of reactive oxidative species and concurrently dissipating mitochondrial membrane potential in a dose- and time-dependent manner, betulinic acid also has an anticancer effect on melanoma cells
MMP↓,
Sp1/3/4↓, nude mice bearing LNCaP cell xenografts has been observed by betulinic acid treatment and this result was associated with reduction in the expression of Sp1, Sp3, and Sp4 proteins and vascular endothelial growth factor (VEGF)
VEGF↓,

2760- BetA,    A Review on Preparation of Betulinic Acid and Its Biological Activities
- Review, Var, NA - Review, Stroke, NA
AntiTum↑, BA is considered a future promising antitumor compound
Cyt‑c↑, BA stimulated mitochondria to release cytochrome c and Smac and cause further apoptosis reactions
Smad1↑,
Sepsis↓, Administration of 10 and 30 mg/kg of BA significantly improved survival against sepsis and attenuated lung injury.
NF-kB↓, BA inhibited nuclear factor-kappa B (NF-κB) expression in the lung and decreased levels of cytokine, intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-9 (MMP-9)
ICAM-1↓,
MCP1↓,
MMP9↓,
COX2↓, In hPBMCs, BA suppressed cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PEG2) production by inhibiting extracellular regulated kinase (ERK) and Akt phosphorylation and thereby modulated the NF-κB signaling pathway
PGE2↓,
ERK↓,
p‑Akt↓,
*ROS↓, BA significantly decreased the mortality of mice against endotoxin shock and inhibited the production of PEG2 in two of the most susceptible organs, lungs and livers [80]. Moreover, BA reduced reactive oxygen species (ROS) formation
*LDH↓, and the release of lactate dehydrogenase
*hepatoP↑, hepatoprotective effect of BA from Tecomella undulata.
*SOD↑, Pretreatment of BA prevented the depletion of hepatic antioxidants superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) and ascorbic acid (AA) and decreased the CCl4-induced LPO level
*Catalase↑,
*GSH↑,
*AST↓, A also attenuated the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) plasma level,
*ALAT↓,
*RenoP↑, BA also exhibits renal-protective effects. Renal fibrosis is an end-stage renal disease symptom that develops from chronic kidney disease (CKD).
*ROS↓, BA protected against this ischemia-reperfusion injury in a mice model by enhancing blood flow and reducing oxidative stress and nitrosative stress
*α-SMA↓, Moreover, BA reduced the expression of α-smooth muscle actin (α-SMA) and collagen-I

2761- BetA,    Betulinic acid increases lifespan and stress resistance via insulin/IGF-1 signaling pathway in Caenorhabditis elegans
- in-vivo, Nor, NA
Insulin↓, BA improves insulin sensitivity in metabolic syndrome rats (51), but inhibits insulin/IGF-1 receptor signaling to suppress de novo lipogenesis in HepG2 cells
IGF-1↓,
*SOD↑, figure 4
*Catalase↑,
*GSH↑,
*MDA↓,
*antiOx?, Betulinic acid has robust antioxidant activity in vivo.

2762- BetA,    Targeting Effect of Betulinic Acid Liposome Modified by Hyaluronic Acid on Hepatoma Cells In Vitro
- in-vitro, Liver, HepG2
ROCK1↓, BA, BA-L, and HA-BA-L downregulated the expression of ROCK1, IP3, and RAS in HepG2 cells,
RAS↓,
*BioAv↓, However, its shortcomings, namely poor water solubility and low bioavailability of BA in vivo, limit its clinical application.
BioAv↑, Liposomes can effectively improve the bioavailability of BA. Therefore, the development of liposomal BA delivery can further enhance its efficacy.

2763- BetA,    Betulinic Acid Inhibits the Stemness of Gastric Cancer Cells by Regulating the GRP78-TGF-β1 Signaling Pathway and Macrophage Polarization
- in-vitro, GC, NA
GRP78/BiP↓, The results indicated that BA inhibited not only GRP78-mediated stemness-related protein expression and GRP78-TGF-β-mediated macrophage polarization
TGF-β↓, BA Inhibits the Expression of GRP78, TGF-β1, and Stemness Markers in Human Gastric Cancer Cells
ChemoSen↑, BA is a promising candidate for clinical application in combination-chemotherapy targeting cancer stemness.
CSCs↓,
SMAD2↓, BA inhibited TGF-β/Smad2/3 signaling, TGF-β1 secretion, and OCT4 expression in a dose-dependent manner
SMAD3↓,
OCT4↓,

2764- BetA,    In silico profiling of histone deacetylase inhibitory activity of compounds isolated from Cajanus cajan
- Analysis, Var, NA
HDAC↓, betulinic acid might be a suitable HDAC inhibitor worthy of further investigation in order to be used for regulating conditions associated with overexpression of HDACs.

2765- BetA,    Unveiling Betulinic Acid as a Potent CDK4 Inhibitor for Cancer Therapeutics
- in-vitro, Lung, A549
CDK4↓, in silico and in vitro methodology, reveals Betulinic Acid’s inhibitory efficacy against CDK4 for cancer therapy

2766- BetA,    Role of natural secondary metabolites as HIF-1 inhibitors in cancer therapy
- Review, Var, NA
Hif1a↓, Furthermore, it was demonstrated that betulinic acid reduces HIF-1 accumulation, which in consequence leads to a decrease in HIF-1 sensitive genes including VEGF and GLUT1 in hypoxic cervical cancer cells
VEGF↓,
GLUT1↓,

2771- BetA,    Cardioprotective Effect of Betulinic Acid on Myocardial Ischemia Reperfusion Injury in Rats
- in-vivo, Nor, NA - in-vivo, Stroke, NA
*cardioP↑, Pretreatment with BA improved cardiac function and attenuated LDH and CK activities compared with IR group
*LDH↓,
eff↑, prevent cardiomyocytes apoptosis, and eventually alleviate the extent of the myocardial ischemia/reperfusion injury.

2727- BetA,    Betulinic acid in the treatment of breast cancer: Application and mechanism progress
- Review, BC, NA
mt-ROS↑, Its mechanisms mainly include inducing mitochondrial oxidative stress, regulating specific protein (Sp) transcription factors, inhibiting breast cancer metastasis, inhibiting glucose metabolism and NF-κB pathway.
Sp1/3/4↓, By triggering the degradation of Sp1, Sp3, and Sp4, betulinic acid reduces the transcriptional activity of these factors
TumMeta↓,
GlucoseCon↓,
NF-kB↓,
ChemoSen↑, BA can also increase the sensitivity of breast cancer cells to other chemotherapy drugs such as paclitaxel and reduce its toxic side effects.
chemoP↑,
m-Apoptosis↑, variety of mechanisms, including inducing mitochondrial apoptosis, inhibiting topoisomerase
TOP1↓, betulinic acid may inhibit the ability of topoisomerase I or II to properly cleave and re-ligate DNA strands.

1285- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, Var, NA
Apoptosis↑,
Bcl-2↓,
cycD1↓,
BAX↑,

1305- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, UEC, NA
Apoptosis↑,
Bcl-2↓,
BAX↑,

2716- BetA,    Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment
- Review, Var, NA
AntiCan↑, BA has a range of well-documented pharmacological and biological effects, including antibacterial, immunomodulatory, diuretic, antiviral, antiparasitic, antidiabetic, and anticancer activities
TumCD↑, anticancer properties of BA are mediated by the activation of cell death and cell cycle arrest, production of reactive oxygen species, increased mitochondrial permeability, modulation of nuclear factor-κB and Bcl-2 family signaling
TumCCA↑,
ROS↑,
NF-kB↓,
Bcl-2↓,
Half-Life↝, The half-life eliminations were 11.8 and 11.5 h after 500 and 250 mg/kg of intraperitoneal (i.p.) BA administration
GLUT1↓, the expression of HIF target genes, such as GLUT1, VEGF, and PDK1 was also suppressed by BA
VEGF↓,
PDK1↓,

2717- BetA,    Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma
- in-vitro, Melanoma, U266 - in-vivo, Melanoma, NA - in-vitro, Melanoma, RPMI-8226
Apoptosis↑, BA mediated cytotoxicity in MM cells through apoptosis, S-phase arrest, mitochondrial membrane potential (MMP) collapse, and overwhelming reactive oxygen species (ROS) accumulation.
TumCCA↑, S-Phase Arrest in U266 Cells
MMP↓,
ROS↑, exhibited concentration-dependent increases in intracellular ROS
eff↓, ROS scavenger N-acetyl cysteine (NAC) effectively abated elevated ROS, the BA-induced apoptosis was partially reversed
NF-kB↓, BA resulted in marked inhibition of the aberrantly activated NF-κB pathway in MM
Cyt‑c↑, BA mediated the release of cyt c and activated cleaved caspase-3, caspase-8, and caspase-9 and cleaved PARP1
Casp3↑,
Casp8↑,
Casp9↑,
cl‑PARP1↑,
MDA↑, here is a concentration-dependent increase in MDA contents and reduction in SOD activities, especially for the high concentration group.
SOD↓,
SOD2↓, expression of genes SOD2, FHC, GCLM, and GSTM was all decreased following treatment with BA (40 μM)
GCLM↓,
GSTA1↓,
FTH1↓, FHC
GSTs↓, GSTM
TumVol↓, BA Inhibits the Growth of MM Xenograft Tumors In Vivo. BA-treated group were significantly reduced (inhibition ratio of approximately 72.1%).

2718- BetA,    The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis
- in-vitro, AML, U937
TumCCA↑, BA exerted a significant cytotoxic effect on U937 cells through blocking cell cycle arrest at the G2/M phase and inducing apoptosis, and that the intracellular reactive oxygen species (ROS) levels increased after treatment with BA.
Apoptosis↑,
i-ROS↑,
cycA1↓, down-regulation of cyclin A and cyclin B1, and up-regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 revealed the G2/M phase arrest mechanism of BA.
CycB↓,
P21↑,
Cyt‑c↑, BA induced the cytosolic release of cytochrome c by reducing the mitochondrial membrane potential with an increasing Bax/Bcl-2 expression ratio.
MMP↓,
Bax:Bcl2↑,
Casp9↑, BA also increased the activity of caspase-9 and -3, and subsequent degradation of the poly (ADP-ribose) polymerase.
Casp3↑,
PARP↓,
eff↓, However, quenching of ROS by N-acetyl-cysteine, an ROS scavenger, markedly abolished BA-induced G2/M arrest and apoptosis, indicating that the generation of ROS plays a key role in inhibiting the proliferation of U937 cells by BA treatment.
*antiOx↑, Accumulated evidence demonstrates that BA possesses various biological activities, including antioxidant, anti-inflammatory, hepatoprotective, and anti-tumor effects
*Inflam↓,
*hepatoP↑,
selectivity↑, BA are complex and depends on the type of cancer cells, without causing toxicity toward normal cells
NF-kB↓, Shen et al. (2019) recently reported that the suppression of the nuclear factor-kappa B pathway increased downstream oxidant effectors, thereby promoting the generation of reactive oxygen species (ROS) in BA-stimulated multiple myeloma cells.
*ROS↓, Although BA is known to have antioxidant activity that blocks the accumulation of ROS due to oxidative stress in normal cells (Cheng et al. 2019;

2719- BetA,    Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential
- in-vitro, CRC, T24 - in-vitro, Bladder, UMUC3 - in-vitro, Bladder, 5637
TumCD↑, BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest.
Apoptosis↑,
TumCCA↑,
CycB↓, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c
cycA1↓,
CDK2↓,
CDC25↓,
mtDam↑, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway.
BAX↑, BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9.
cl‑PARP↑,
Casp3↑,
Casp8↑,
Casp9↑,
Snail↓, decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells.
Slug↓,
MMP9↓,
selectivity↑, Among the bladder cancer cell lines, 5637 cells were much more sensitive to BA than T24 or UMUC-3 cells under the same conditions. However, BA does not affect cell growth in normal cell lines including RAW 264.7
MMP↓, BA Induces Loss of Mitochondrial Membrane Potential (MMP, ΔΨm) in Human Bladder Cancer Cells
ROS∅, As a result, we found that BA did not affect intracellular ROS levels in all three bladder cancer cells. In addition, BA-induced cell viability inhibition was not restored by NAC pre-treatment
TumCMig↓, BA Decreases Migration and Invasion of Human Bladder Cancer Cells
TumCI↓,

2720- BetA,    Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vivo
- in-vitro, Cerv, HeLa
Keap1↝, The findings revealed that BA activated Keap1/Nrf2 pathway and triggered mitochondria-dependent apoptosis due to ROS production.
ROS↑,
Ca+2↑, Furthermore, BA increased the intracellular Ca2+ levels
Beclin-1↓, inhibited the expression of Beclin1 and promoted the expression of GRP78, LC3-II, and p62 associated with ERS and autophagy.
GRP78/BiP↑,
LC3II↑,
p62↑,
ERS↑,
TumAuto↑,

2721- BetA,    Proteomic Investigation into Betulinic Acid-Induced Apoptosis of Human Cervical Cancer HeLa Cells
- in-vitro, Cerv, HeLa
ROS↑, Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells
Dose↝, The level of ROS in BA-treated cells was 9.28-fold and 12.77-fold higher than the level of ROS in control cells for treatments of 15 µmol/L and 30 µmol/L, respectively,
Bcl-2↓, The expression level of Bcl-2 was observed to be significantly lower than the control level. In contrast, the expression of proapoptotic Bax was significantly increased compared to the controls by qRT-PCR
BAX↑,
ER Stress↑, In the present work, up-regulated protein expression was detected, which may mediate the ER process of BA in HeLa cells.

2722- BetA,    Betulinic Acid for Cancer Treatment and Prevention
- Review, Var, NA
MMP↓, betulinic acid induced loss of mitochondrial membrane potential
Cyt‑c↑, betulinic acid was shown to trigger cytochrome c
cl‑Casp3↑, Cleavage of caspase-3 and -8 was preceded by disturbance of mitochondrial membrane potential and by generation of reactive oxygen species.
cl‑Casp8↑,
ROS↑,
NF-kB↑, Betulinic acid was identified as a potent activator of NF-κB in a number of cancer cell lines
TOP1↓, betulinic acid was shown to inhibit the catalytic activity of topoisomerase I

2723- BetA,    Betulinic acid and oleanolic acid modulate CD81 expression and induce apoptosis in triple-negative breast cancer cells through ROS generation
- in-vitro, BC, MDA-MB-231
Apoptosis↑, Triterpenoids such as betulinic acid (BA) and oleanolic acid (OA) have anticancer effects by inducing apoptosis in TNBC cells.
tumCV↓, The result showed that BA and OA inhibited viability of MDA-MB-231 cells.
ROS↑, BA and OA also increased intracellular ROS levels and induced apoptosis.

2724- BetA,    Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice
- in-vivo, Nor, NA - in-vivo, Stroke, NA
AntiTum↑, Betulinic acid is mainly known for its anti-tumor and anti-inflammatory activities.
*Inflam↓,
*ROS↓, Our previous study showed that betulinic acid could decrease the reactive oxygen species (ROS) production by regulating the expression of NADPH oxidase.
*NOX4↓, Pre-treatment with betulinic acid (50 mg/kg/day for 7 days via gavage) prior to MCA occlusion prevented the ischemia/reperfusion-induced up-regulation of NOX4 and ROS production.
*Apoptosis↓, treatment with betulinic acid could markedly blunt the ischemia/reperfusion-induced neuronal apoptosis
neuroP↑, betulinic acid protects against cerebral ischemia/reperfusion injury in mice

2725- BetA,    Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice
- in-vivo, Nor, NA
*RenoP↑, BA pretreatment alleviated excessive glomerular hemorrhage and inflammatory cell infiltration in kidneys caused by T-2 toxin.
*SOD?, Moreover, pretreatment with BA mitigated T-2 toxin-induced renal oxidative damage by up-regulating the activities of SOD and CAT, and the content of GSH, while down-regulating the accumulation of ROS and MDA
*Catalase↑,
*GSH↑,
*ROS↓,
*MDA↓,
*IL1β↓, decreasing the mRNA expression of IL-1β, TNF-α and IL-10, and increasing IL-6 mRNA expression
*TNF-α↓,
*IL10↓,
*IL6↑,
*NRF2↑, pretreatment with BA could activate Nrf2 signaling pathway.

2726- BetA,    Betulinic acid induces DNA damage and apoptosis in SiHa cells
- in-vitro, Cerv, SiHa
tumCV↓, BA was shown to destroy SiHa cells preferentially in a concentration dependent manner with a 50% inhibition of the cells at 39.83 μg/ml.
DNAdam↑, BA was coupled with DNA strand breaks, morphological changes, disruption of MMP, reactive oxygen species (ROS) generation and the cell arrest at G0/G1 stage of cell cycle.
MMP↓,
ROS↑,
TumCCA↑,
TOP1↓, It has been previously reported that inhibition of topoisomerases might be an additional mechanism of BA-induced cell death

943- BetA,    Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
Glycolysis↓,
lactateProd↓,
GlucoseCon↓,
ECAR↓,
cMyc↓,
LDHA↓,
p‑PDK1↓,
PDK1↓,
Cav1↑, Cav-1) as one of key targets of BA in suppressing aerobic glycolysis, as BA administration resulted in Cav-1 upregulation
*Glycolysis↑, BA could lead to increased glycolysis in mouse embryonic fibroblasts by activating LKB1/AMPK pathway, whereas we found that BA inhibited aerobic glycolysis in breast cancer cells by modulating Cav-1/NF-κB/c-Myc signaling
selectivity↑,
OCR↓, OCR parameters including the basal respiration, maximal respiration and spare respiratory capacity were also simultaneously inhibited
OXPHOS↓, implying that the activity of mitochondrial oxidative phosphorylation (OXPHOS) chain was also suppressed by BA

2728- BetA,    Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy
- in-vitro, Var, NA
NF-kB↑, BetA activates NF-kappaB in a variety of tumor cell lines.
IKKα↑, BetA-induced NF-kappaB activation involved increased IKK activity
eff↓, NF-kappaB inhibitors in combination with BetA would have no therapeutic benefit or could even be contraproductive in certain tumors, which has important implications for the design of BetA-based combination protocols.

2729- BetA,    Betulinic acid in the treatment of tumour diseases: Application and research progress
- Review, Var, NA
ChemoSen↑, Betulinic acid can increase the sensitivity of cancer cells to other chemotherapy drugs
mt-ROS↑, BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress
STAT3↓, inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways.
NF-kB↓,
selectivity↑, A main advantage of BA and its derivatives is that they are cytotoxic to different human tumour cells, while cytotoxicity is much lower in normal cells.
*toxicity↓, It can kill cancer cells but has no obvious effect on normal cells and is also nontoxic to other organs in xenograft mice at a dose of 500 mg/kg
eff↑, BA combined with chemotherapy drugs, such as platinum and mithramycin A, can induce apoptosis in tumour cells
GRP78/BiP↑, In animal xenograft tumour models, BA enhanced the expression of glucose-regulated protein 78 (GRP78)
MMP2↓, reduced the levels of matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, in lung metastatic lesions of breast cancer, indicating that BA can reduce the invasiveness of breast cancer in vivo and block epithelial mesenchymal transformation (EMT
P90RSK↓,
TumCI↓,
EMT↓,
MALAT1↓, MALAT1, a lncRNA, was downregulated in hepatocellular carcinoma (HCC) cells treated with BA in vivo,
Glycolysis↓, Suppressing aerobic glycolysis of cancer cells by GRP78/β-Catenin/c-Myc signalling pathways
AMPK↑, activating AMPK signaling pathway
Sp1/3/4↓, inhibiting Sp1. BA at 20 mg/kg/d, the tumour volume and weight were significantly reduced, and the expression levels of Sp1, Sp3, and Sp4 in tumour tissues were lower than those in control mouse tissues
Hif1a↓, Suppressing the hypoxia-induced accumulation of HIF-1α and expression of HIF target genes
angioG↓, PC3: Having anti-angiogenesis effect
NF-kB↑, LNCaP, DU145 — Inducing apoptosis and NF-κB pathway
NF-kB↓, U266 — Inhibiting NF-κB pathway.
MMP↓, BA produces ROS and reduces mitochondrial membrane potential; the mitochondrial permeability transition pore of the mitochondrial membrane plays an important role in apoptosis signal transduction.
Cyt‑c↑, Mitochondria release cytochrome C and increase the levels of Caspase-9 and Caspase-3, inducing cell apoptosis.
Casp9↑,
Casp3↑,
RadioS↑, BA could be a promising drug for increasing radiosensitization in oral squamous cell carcinoma radiotherapy.
PERK↑, BA treatment increased the activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) apoptosis pathway and decreased the expression of Sp1.
CHOP↑,
*toxicity↓, BA at a concentration of 50 μg/ml did not inhibit the growth of normal peripheral blood lymphocytes, indicating that the toxicity of BA was at least 1000 times less than that of doxorubicin

2730- BetA,    Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells
- in-vitro, Bladder, T24
tumCV↓, The present study showed that BA exposure significantly suppressed viability, proliferation, and migration of EJ and T24 human bladder cancer cells
TumCP↓,
TumCMig↓,
Casp↑, These effects reflected caspase 3-mediated apoptosis
TumAuto↑, BA-induced autophagy was evidenced by epifluorescence imaging of lentivirus-induced expression of mCherry-GFP-LC3B and increased expression of two autophagy-related proteins, LC3B-II and TEM.
LC3B-II↑,
p‑AMPK↑, Moreover, enhanced AMPK phosphorylation and decreased mTOR and ULK-1 phosphorylation suggested BA activates autophagy via the AMPK/mTOR/ULK1 pathway.
mTOR↓,
BMI1↓, decreased Bmi-1 expression in BA-treated T24 cell xenografts in nude mice suggested that downregulation of Bmi-1 is the underlying mechanism in BA-mediated, autophagy-dependent apoptosis.
ROS↑, BA induced ROS production dose-dependently
eff↓, Co-incubation with NAC effectively blocked ROS production (Figure 4B), rescued cell viability,

2731- BetA,    Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives
- Review, GBM, NA - Review, Park, NA - Review, AD, NA
BBB↑, Notably, its ability to cross the blood–brain barrier addresses a significant challenge in treating neurological pathologies.
*GSH↑, BA can also dramatically reduce catalepsy and stride length, while increasing the brain’s dopamine content, glutathione activity, and catalase activity in hemiparkinsonian rats
*Catalase↑,
*motorD↑,
*neuroP↑, in Alzheimer’s disease rat models, it can improve neurobehavioral impairments . BA has exhibited great neuroprotective properties.
*cognitive↑, BA improves cognitive ability and neurotransmitter levels, and protects from brain damage by lowering reactive oxygen species (ROS) levels
*ROS↓,
*antiOx↑, enhancing brain tissue’s antioxidant capacity, and preventing the release of inflammatory cytokines
*Inflam↓,
MMP↓, BA can decrease the mitochondrial outer membrane potential (MOMP)
STAT3↓, The compound can inhibit the signal transducer and activator of transcription (STAT) 3 signaling pathways, involved in differentiation, proliferation, apoptosis, metastasis formation, angiogenesis, and metabolism, and the NF-kB signaling pathway,
NF-kB↓,
Sp1/3/4↓, BA has shown an ability to control cancer growth through the modulation of Sp transcription factors, inhibit DNA topoisomerase
TOP1↓,
EMT↓, inhibit the epithelial-to-mesenchymal transition (EMT)
Hif1a↓, BA has also been associated with an antiangiogenic response under hypoxia conditions, through the STAT3/hypoxia-inducible factor (HIF)-1α/vascular endothelial growth factor (VEGF) signaling pathway
VEGF↓,
ChemoSen↑, BA has shown great potential as an adjuvant to therapy since its use combined with standard treatment of chemotherapy and irradiation can enhance their cytotoxic effect on cancer cells
RadioS↑,
BioAv↓, Despite having great potential as a therapeutic agent, it is hard for BA to fulfill the requirements for adequate water solubility, maintaining both significant cytotoxicity and selectivity for tumor cells.

2732- BetA,  Chemo,    Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
ChemoSen↑, Here in, we found that BA has synergistic effects with taxol to induce breast cancer cells G2/M checkpoint arrest and apoptosis induction,
selectivity↑, but had little cytotoxicity effects on normal mammary epithelial cells.
GRP78/BiP↑, identified glucose-regulated protein 78 (GRP78) as the direct interacting target of BA.
ER Stress↑, BA administration significantly elevated GRP78-mediated endoplasmic reticulum (ER) stress and resulted in the activation of protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor 2a/CCAAT/enhancer-binding protein homologous protein apopt
PERK↑,
Ca+2↑, We found that BA significantly elevated intracellular free calcium concentration
Cyt‑c↑, increased Cytochrome c and Bax, and the downregulation of Bcl-2
BAX↑,
Bcl-2↓,

2733- BetA,    Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling
- in-vitro, Oral, KB - in-vivo, NA, NA
TumCP↓, BA dose-dependently inhibited KB cell proliferation and decreased implanted tumor volume.
TumVol↓,
mt-Apoptosis↑, BA significantly promoted mitochondrial apoptosis, as reflected by an increase in TUNEL+ cells and the activities of caspases 3 and 9, an increase in Bax expression, and a decrease in Bcl-2 expression and the mitochondrial oxygen consumption rate.
Casp3↑,
Casp9↑,
BAX↑,
Bcl-2↑,
OCR↓, BA dose-dependently decreased the oxygen consumption rate, indicating that BA induced a significant mitochondrial dysfunction
TumCCA↑, BA significantly increased cell population in the G0/G1 phase and decreases the S phase cell number, indicating the occurrence of G0/G1 cell cycle arrest.
ROS↑, ROS generation was significantly increased by BA
eff↓, and antioxidant NAC treatment markedly inhibited the effect of BA on apoptosis, cell cycle arrest, and proliferation.
P53↑, BA dose-dependently increased p53 expression in KB cells and implanted tumors.
STAT3↓, Inhibition of STAT3 Signaling Is Involved in BA-Induced Suppression of Cell Proliferation
cycD1↑, We found that BA mainly increased the mRNA expression of cyclin D1 but had no significant effect on cyclin E, CDK2, CDK4, or CDK6 expression.

2734- BetA,    Betulinic Acid Modulates the Expression of HSPA and Activates Apoptosis in Two Cell Lines of Human Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
tumCV↓, viability of both cancer cells was reduced after they were treated with an increasing dosage of BA.
HSP70/HSPA5⇅, HSPA was increased at lower BA concentrations while at higher BA concentrations HSPA expression was decreased.
ROS↑, In CRC cells, BA was found to increase the production of the reactive oxygen species (ROS), Bax and cleaved caspase-3, leading to mitochondrial apoptosis in the HCT116 cell line
cl‑Casp3↑,
mt-Apoptosis↑,
Dose↝, HSPA was increased after treatment with the BA at 1.25, 2.5 and 5 µM in both of CRC, while the HSPA level was significantly reduced to about 0.7-fold at 10 µM of BA

2735- BetA,    Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications
- Review, Var, NA
mt-Apoptosis↑, BA and analogues (BAs) have been known to exhibit potential antitumor action via provoking the mitochondrial pathway of apoptosis
Casp↑, cytosolic caspase activation
p38↑, inhibition of pro-apoptotic p38, MAPK and SAP/JNK kinases [8],
MAPK↓,
JNK↓,
VEGF↓, decreased expression of pro-apoptotic proteins and vascular endothelial growth factor (VEGF)
AIF↑, BA was recognized to trigger the process of apoptosis in human metastatic melanoma cells (Me-45) by releasing apoptosis inducing factor (AIF) and cytochrome c (Cyt C) through mitochondrial membrane
Cyt‑c↑,
ROS↑, BA also stimulates the increased production of reactive oxygen species (ROS) that is considered a stress factor involved in initiating mitochondrial membrane permeabilization
Ca+2↑, Moreover, the calcium overload and thereby ATP depletion are other stress factors causing enhanced inner mitochondrial membrane permeability via nonspecific pores formation
ATP↓,
NF-kB↓, BA has also known to be involved in activation of nuclear factor kappa B (NF-κB) that is responsible for apoptosis induction in variety of cancer cells
ATF3↓, According to Zhang et al. [14], BA stimulates apoptosis through the suppression of cyclic AMP-dependent transcription factor ATF-3 and NF-κB pathways and downregulation of p53 gene.
TOP1↓, inhibition of topoisomerases
VEGF↓, ecreased expression of vascular endothelial growth (VEGF) and the anti-apoptotic protein surviving in LNCaP prostate cancer cells.
survivin↓,
Sp1/3/4↓, selective proteasome-dependent targeted degradation of transcription factors specificity proteins (Sp1, Sp3, and Sp4), which generally regulate VEGF and survivin expression and highly over-expressed in tumor conditions
MMP↓, perturbed mitochondrial membrane potential
ChemoSen↑, BA can support as sensitizer in combination therapy to enhance the anticancer effects with minimum side effects.
selectivity↑, Normal human fibroblasts [41], peripheral blood lymphoblasts [41], melanocytes [32] and astrocytes [30] were found to be resistant to BA in vitro
BioAv↓, The clinical use of BA is seriously challenging due to high hydrophobicity which subsequently causes poor bioavailability
BioAv↑, A BA-loaded oil-in-water nanoemulsion was developed using phospholipase-catalyzed modified phosphatidylcholine as emulsifier in an ultrasonicator [120].
BioAv↑, Aqueous solubility of BA may also be increased through grinding with hydrophilic polymers (polyethylene glycol, polyvinylpyrrolidone, arabinogalactan) [121,122].
BioAv↑, Subsequently, for further improvement in biocompatibility, a technique of nanotube coating was employed with four biopolymers i.e. polyethylene glycol (PEG), chitosan, tween 20 and tween 80.
BioAv↑, Similarly, BA-coated silver nanoparticles displayed an improved antiproliferative and antimigratory activity, particularly against melanoma cells (A375: murine melanoma cells)

2736- BetA,  Chemo,    Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis
- Review, Var, NA
chemoP↑, reviews about cancer chemopreventive role of betulinic acid against wide variety of cancers [18,19,20,21].
p‑STAT3↓, betulinic acid reduced the levels of p-STAT3 in tumor tissues derived from KB cells
JAK1↓, Betulinic acid exerted inhibitory effects on the constitutive phosphorylation of JAK1 and JAK2
JAK2↓,
VEGF↓, betulinic acid mediated inhibition of VEGF
EGFR↓, evaluation of betulinic acid as a next-generation EGFR inhibitor
Cyt‑c↑, release of SMAC/DIABLO and cytochrome c from mitochondria in SHEP neuroblastoma cells
Diablo↑,
AMPK↑, Betulinic acid induced activation of AMPK and consequently reduced the activation of mTOR.
mTOR↓,
Sp1/3/4↓, Betulinic acid significantly reduced the quantities of Sp1, Sp3 and Sp4 in the tissues of the tumors derived from RKO cells
DNAdam↑, Betulinic acid efficiently triggered DNA damage (γH2AX) and apoptosis (caspase-3 and p53 phosphorylation) in temozolomide-sensitive and temozolomide-resistant glioblastoma cells.
Gli1↓, Betulinic acid effectively reduced GLI1, GLI2 and PTCH1 in RMS-13 cells.
GLI2↓,
PTCH1↓,
MMP2↓, betulinic acid exerted inhibitory effects on MMP-2 and MMP-9 in HepG2 cells.
MMP9↓,
miR-21↓, Collectively, p53 increased miR-21 levels and inhibited SOD2 levels, leading to significant increase in the accumulation of ROS levels and apoptotic cell death.
SOD2↓,
ROS↑,
Apoptosis↑,

2737- BetA,    Multiple molecular targets in breast cancer therapy by betulinic acid
- Review, Var, NA
TumCP↓, Betulinic acid (BA), a pipeline anticancer drug, exerts anti-proliferative effects on breast cancer cells is mainly through inhibition of cyclin and topoisomerase expression, leading to cell cycle arrest.
Cyc↓,
TOP1↓,
TumCCA↑,
angioG↓, anti-angiogenesis effect by inhibiting the expression of transcription factor nuclear factor kappa B (NF-κB), specificity protein (Sp) transcription factors, and vascular endothelial growth factor (VEGF) signaling.
NF-kB↓, Inhibition of NF-kB signaling pathway
Sp1/3/4↓,
VEGF↓,
MMPs↓, inhibiting the expression of matrix metalloproteases
ChemoSen↑, Synergistically interactions of BA with other chemotherapeutics are also described in the literature.
eff↑, BA is highly lipid soluble [74,75], and it readily passes through membranes, including plasma and mitochondrial membranes. BA acts directly on mitochondria
MMP↓, decreases mitochondrial outer membrane potential (MOMP), leading to increased outer membrane permeability, generation of reactive oxygen species (ROS),
ROS↑,
Bcl-2↓, reducing expression of anti-apoptotic proteins Bcl-2, Bcl-XL and Mcl-1
Bcl-xL↓,
Mcl-1↓,
lipid-P↑, BA inhibits the growth of breast cancer cells via lipid peroxidation resulting from the generation of ROS
RadioS↑, The cytotoxicity effect of BA on glioblastoma cells is not strong; however, some studies indicate that the combination of BA and radiotherapy could represent an advancement in treatment of glioblastoma [
eff↑, BA and thymoquinone inhibit MDR and induce cell death in MCF-7 breast cancer cells by suppressing BCRP [

2738- BetA,    Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
TumCI↓, BA inhibited invasion and migration of highly aggressive breast cancer cells.
TumCMig↓,
Glycolysis↓, Moreover, BA could suppress aerobic glycolysis of breast cancer cells presenting as a reduction of lactate production, quiescent energy phenotype transition, and downregulation of aerobic glycolysis-related proteins.
lactateProd↓, lactate production in both MDA-MB-231 and BT-549 cells was significantly reduced following BA administration
GRP78/BiP↑, (GRP78) was also identified as the molecular target of BA in inhibiting aerobic glycolysis. BA treatment led to GRP78 overexpression, and GRP78 knockdown abrogated the inhibitory effect of BA on glycolysis.
ER Stress↑, Further studies demonstrated that overexpressed GRP78 activated the endoplasmic reticulum (ER) stress sensor PERK.
PERK↑,
p‑eIF2α↑, Subsequent phosphorylation of eIF2α led to the inhibition of β-catenin expression, which resulted in the inhibition of c-Myc-mediated glycolysis.
β-catenin/ZEB1↓,
cMyc↓, These findings suggested that BA inhibited the β-catenin/c-Myc pathway by interrupting the binding between GRP78 and PERK and ultimately suppressed the glycolysis of breast cancer cells.
ROS↑, (i) the induction of cancer cell apoptosis via the mitochondrial pathway induced by the release of soluble factors or generation of reactive oxygen species (ROS)
angioG↓, (ii) the inhibition of angiogenesis [24];
Sp1/3/4↓, (iii) the degradation of transcription factor specificity protein 1 (Sp1)
DNAdam↑, (iv) the induction of DNA damage by suppressing topoisomerase I
TOP1↓,
TumMeta↓, BA Inhibits Metastasis of Highly Aggressive Breast Cancer Cells
MMP2↓, BA significantly decreased the expression of MMP-2 and MMP-9 secreted by breast cancer cells
MMP9↓,
N-cadherin↓, BA downregulated the levels of N-cadherin and vimentin as the mesenchymal markers, while increased E-cadherin which is an epithelial marker (Figure 2(c)), validating the EMT inhibition effects of BA in breast cancer cells.
Vim↓,
E-cadherin↑,
EMT↓,
LDHA↓, the levels of glycolytic enzymes, including LDHA and p-PDK1/PDK1, were all decreased in a dose-dependent manner by BA
p‑PDK1↓,
PDK1↓,
ECAR↓, extracellular acidification rate (ECAR), which reflects the glycolysis activity, was retarded following BA administration.
OCR↓, oxygen consumption rate (OCR), which is a marker of mitochondrial respiration, was also decreased simultaneously
Hif1a↓, BA could reduce prostate cancer angiogenesis via inhibiting the HIF-1α/stat3 pathway [39]
STAT3↓,

2739- BetA,    Glycolytic Switch in Response to Betulinic Acid in Non-Cancer Cells
- in-vitro, Nor, HUVECs - in-vitro, Nor, MEF
*Glycolysis↑, BA elevates the rates of cellular glucose uptake and aerobic glycolysis in mouse embryonic fibroblasts with concomitant reduction of glucose oxidation.
*GlucoseCon↑, BA increases cellular glucose uptake
*Apoptosis↓, Without eliciting signs of obvious cell death BA leads to compromised mitochondrial function, increased expression of mitochondrial uncoupling proteins (UCP) 1 and 2, and liver kinase B1 (LKB1)-dependent activation AMP-activated protein kinase.
*UCP1↓,
*AMPK↑, AMPK activation accounts for the increased glucose uptake and glycolysis which in turn are indispensable for cell viability upon BA treatment.
GLUT1↑, The expression of glucose transporter GLUT1 was elevated upon BA treatment for 16 h
mt-ROS↑, We observed increased production of mitochondrial ROS (Fig. 4A) and elevated expression of uncoupling proteins UCP1 and UCP2 in BA-treated MEF


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 55

Results for Effect on Cancer/Diseased Cells:
ACSL1↓,1,   AIF↑,2,   p‑Akt↓,3,   AMPK↑,2,   p‑AMPK↑,1,   angioG↓,5,   AntiCan↑,1,   antiOx↓,1,   AntiTum↑,2,   Apoptosis↓,1,   Apoptosis↑,11,   m-Apoptosis↑,1,   mt-Apoptosis↑,4,   ATF3↓,1,   ATP↓,1,   BAD↑,1,   BAX↑,8,   Bax:Bcl2↑,1,   BBB↑,1,   Bcl-2↓,9,   Bcl-2↑,1,   Bcl-xL↓,1,   Beclin-1↓,1,   BioAv↓,3,   BioAv↑,5,   BMI1↓,1,   Ca+2↑,3,   Casp↑,5,   Casp3↑,7,   cl‑Casp3↑,3,   Casp7↑,2,   Casp8↑,2,   cl‑Casp8↑,1,   Casp9↑,7,   Cav1↑,1,   CDC25↓,1,   CDK2↓,1,   CDK4↓,1,   chemoP↑,3,   ChemoSen↑,11,   CHK1↓,1,   CHOP↑,1,   cMyc↓,2,   COX2↓,1,   CPT1A↓,1,   CSCs↓,1,   Cyc↓,1,   cycA1↓,2,   CycB↓,2,   cycD1↓,2,   cycD1↑,1,   Cyt‑c↑,12,   Diablo↑,2,   DNAdam↑,4,   Dose↝,2,   E-cadherin↑,2,   ECAR↓,2,   eff↓,6,   eff↑,5,   EGFR↓,2,   p‑eIF2α↑,1,   EMT↓,5,   ER Stress↑,3,   ER-α36↓,1,   ERK↓,1,   ERS↑,1,   FAK↓,1,   FAO↓,1,   FASN↓,1,   Ferritin↑,1,   Ferroptosis↑,2,   FTH1↓,2,   GCLM↓,1,   Gli1↓,1,   GLI2↓,1,   GlucoseCon↓,3,   GLUT1↓,2,   GLUT1↑,1,   Glycolysis↓,4,   GPx4↓,1,   GRP78/BiP↓,1,   GRP78/BiP↑,4,   GSH↓,1,   GSTA1↓,1,   GSTs↓,1,   Half-Life↝,1,   HDAC↓,1,   Hif1a↓,4,   HK2↓,1,   HO-1↓,1,   HO-1↑,1,   HSP70/HSPA5⇅,1,   ICAM-1↓,1,   IGF-1↓,1,   IKKα↑,1,   Inflam↓,1,   Insulin↓,1,   JAK1↓,1,   JAK2↓,1,   JNK↓,1,   JNK↑,1,   Keap1↝,1,   Ki-67↓,1,   lactateProd↓,3,   LAMs↓,1,   LC3B-II↑,1,   LC3II↑,1,   LDHA↓,2,   lipid-P↑,1,   MALAT1↓,1,   MAPK↓,1,   MAPK↑,1,   Mcl-1↓,1,   MCP1↓,1,   MDA↓,1,   MDA↑,1,   miR-21↓,1,   MMP↓,17,   MMP2↓,5,   MMP9↓,5,   MMPs↓,2,   mtDam↑,1,   mTOR↓,2,   N-cadherin↓,2,   NCOA4↑,1,   neuroP↑,1,   NF-kB↓,15,   NF-kB↑,4,   NRF2↓,1,   NRF2↑,1,   OCR↓,3,   OCT4↓,1,   OXPHOS↓,1,   P21↑,2,   p27↑,1,   p38↑,2,   P53↑,1,   p62↑,1,   p65↓,1,   P90RSK↓,1,   PARP↓,1,   PARP↑,1,   cl‑PARP↑,2,   cl‑PARP1↑,1,   PDK1↓,3,   p‑PDK1↓,2,   PERK↑,3,   PFK1↓,1,   PGE2↓,1,   PI3K↓,1,   p‑PI3K↓,1,   PKM2↓,1,   PTCH1↓,1,   RadioS↑,5,   RAS↓,1,   ROCK1↓,1,   ROS↓,2,   ROS↑,21,   ROS∅,1,   i-ROS↑,1,   mt-ROS↑,3,   selectivity↑,8,   Sepsis↓,1,   Slug↓,1,   Smad1↑,1,   SMAD2↓,1,   SMAD3↓,1,   Snail↓,1,   SOD↓,1,   SOD2↓,2,   Sp1/3/4↓,11,   STAT3↓,5,   STAT3↑,1,   p‑STAT3↓,1,   survivin↓,4,   TGF-β↓,1,   TIMP2↑,2,   TOP1↓,11,   TumAuto↑,2,   TumCCA↑,10,   TumCD↑,2,   TumCG↓,4,   TumCI↓,6,   TumCMig↓,7,   TumCP↓,5,   tumCV↓,8,   TumMeta↓,2,   TumVol↓,3,   VEGF↓,11,   Vim↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 191

Results for Effect on Normal Cells:
ALAT↓,1,   AMPK↑,1,   antiOx?,1,   antiOx↑,3,   Apoptosis↓,2,   AST↓,1,   BioAv↓,1,   cardioP↑,1,   Catalase↑,4,   cognitive↑,1,   COX2↓,2,   E-sel↓,1,   p‑ERK↓,1,   GlucoseCon↑,1,   Glycolysis↑,2,   GPx↑,1,   GSH↑,5,   GSR↑,1,   heparanase↑,1,   hepatoP↑,2,   HO-1↑,2,   ICAM-1↓,1,   IFN-γ↓,1,   IKKα↓,1,   IL10↓,1,   IL10↑,2,   IL12↓,1,   IL17↓,1,   IL1β↓,2,   IL2↓,1,   IL6↓,1,   IL6↑,1,   IL8↓,1,   Inflam↓,4,   p‑JNK↓,1,   LDH↓,2,   MAPK↓,2,   MDA↓,4,   motorD↑,1,   neuroP↑,1,   NF-kB↓,2,   NO↓,1,   NOX4↓,1,   NRF2↑,3,   p‑p38↓,1,   PGE2↓,1,   RenoP↑,2,   ROS↓,7,   SOD?,1,   SOD↑,4,   TNF-α↓,1,   TNF-α↑,1,   toxicity↓,3,   UCP1↓,1,   VCAM-1↓,1,   α-SMA↓,1,  
Total Targets: 56

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:42  Target#:%  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page