condition found tbRes List
BetA, Betulinic acid: Click to Expand ⟱
Features:
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.
-Betulinic acid is a naturally occurring pentacyclic triterpenoid
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg
-half-life reports vary 3-5 hrs?.
BioAv -hydrophobic molecule with relatively poor water solubility.

Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells


GlucoseCon, Glucose Consumption: Click to Expand ⟱
Source:
Type:
Glucose consumption is often elevated in cancer cells due to an increased reliance on glycolysis for energy production, even in the presence of oxygen. This phenomenon, known as the Warburg effect, is a metabolic shift that allows cancer cells to rapidly proliferate and survive in nutrient-poor environments.

The increased glucose consumption in cancer cells can be detected using positron emission tomography (PET) scans, which measure the uptake of a glucose analog labeled with a radioactive tracer.


Scientific Papers found: Click to Expand⟱
2740- BetA,    Effects and mechanisms of fatty acid metabolism-mediated glycolysis regulated by betulinic acid-loaded nanoliposomes in colorectal cancer
- in-vitro, CRC, HCT116
TumCP↓, BA-NLs significantly suppressed the proliferation and glucose uptake of CRC cells by regulating potential glycolysis and fatty acid metabolism targets and pathways, which forms the basis of the anti-CRC function of BA-NLs.
Glycolysis↓,
HK2↓, HK2, PFK-1, PEP and PK isoenzyme M2 (PKM2) in glycolysis, and of ACSL1, CPT1a and PEP in fatty acid metabolism, were blocked by BA-NLs, which play key roles in the inhibition of glycolysis and fatty acid-mediated production of pyruvate and lactate.
PFK1↓,
PKM2↓,
ACSL1↓,
CPT1A↓,
FASN↓,
FAO↓, Significant reduction of FAO was detected in BA-NL-treated HCT116 cells
GlucoseCon↓, glucose uptake in HCT116 cells was significantly decreased by BA-NLs
lactateProd↓, lactic acid secretion was significantly suppressed in HCT116 cells treated with BA-NLs

2727- BetA,    Betulinic acid in the treatment of breast cancer: Application and mechanism progress
- Review, BC, NA
mt-ROS↑, Its mechanisms mainly include inducing mitochondrial oxidative stress, regulating specific protein (Sp) transcription factors, inhibiting breast cancer metastasis, inhibiting glucose metabolism and NF-κB pathway.
Sp1/3/4↓, By triggering the degradation of Sp1, Sp3, and Sp4, betulinic acid reduces the transcriptional activity of these factors
TumMeta↓,
GlucoseCon↓,
NF-kB↓,
ChemoSen↑, BA can also increase the sensitivity of breast cancer cells to other chemotherapy drugs such as paclitaxel and reduce its toxic side effects.
chemoP↑,
m-Apoptosis↑, variety of mechanisms, including inducing mitochondrial apoptosis, inhibiting topoisomerase
TOP1↓, betulinic acid may inhibit the ability of topoisomerase I or II to properly cleave and re-ligate DNA strands.

943- BetA,    Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
Glycolysis↓,
lactateProd↓,
GlucoseCon↓,
ECAR↓,
cMyc↓,
LDHA↓,
p‑PDK1↓,
PDK1↓,
Cav1↑, Cav-1) as one of key targets of BA in suppressing aerobic glycolysis, as BA administration resulted in Cav-1 upregulation
*Glycolysis↑, BA could lead to increased glycolysis in mouse embryonic fibroblasts by activating LKB1/AMPK pathway, whereas we found that BA inhibited aerobic glycolysis in breast cancer cells by modulating Cav-1/NF-κB/c-Myc signaling
selectivity↑,
OCR↓, OCR parameters including the basal respiration, maximal respiration and spare respiratory capacity were also simultaneously inhibited
OXPHOS↓, implying that the activity of mitochondrial oxidative phosphorylation (OXPHOS) chain was also suppressed by BA

2739- BetA,    Glycolytic Switch in Response to Betulinic Acid in Non-Cancer Cells
- in-vitro, Nor, HUVECs - in-vitro, Nor, MEF
*Glycolysis↑, BA elevates the rates of cellular glucose uptake and aerobic glycolysis in mouse embryonic fibroblasts with concomitant reduction of glucose oxidation.
*GlucoseCon↑, BA increases cellular glucose uptake
*Apoptosis↓, Without eliciting signs of obvious cell death BA leads to compromised mitochondrial function, increased expression of mitochondrial uncoupling proteins (UCP) 1 and 2, and liver kinase B1 (LKB1)-dependent activation AMP-activated protein kinase.
*UCP1↓,
*AMPK↑, AMPK activation accounts for the increased glucose uptake and glycolysis which in turn are indispensable for cell viability upon BA treatment.
GLUT1↑, The expression of glucose transporter GLUT1 was elevated upon BA treatment for 16 h
mt-ROS↑, We observed increased production of mitochondrial ROS (Fig. 4A) and elevated expression of uncoupling proteins UCP1 and UCP2 in BA-treated MEF


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
ACSL1↓,1,   m-Apoptosis↑,1,   Cav1↑,1,   chemoP↑,1,   ChemoSen↑,1,   cMyc↓,1,   CPT1A↓,1,   ECAR↓,1,   FAO↓,1,   FASN↓,1,   GlucoseCon↓,3,   GLUT1↑,1,   Glycolysis↓,2,   HK2↓,1,   lactateProd↓,2,   LDHA↓,1,   NF-kB↓,1,   OCR↓,1,   OXPHOS↓,1,   PDK1↓,1,   p‑PDK1↓,1,   PFK1↓,1,   PKM2↓,1,   mt-ROS↑,2,   selectivity↑,1,   Sp1/3/4↓,1,   TOP1↓,1,   TumCP↓,1,   TumMeta↓,1,  
Total Targets: 29

Results for Effect on Normal Cells:
AMPK↑,1,   Apoptosis↓,1,   GlucoseCon↑,1,   Glycolysis↑,2,   UCP1↓,1,  
Total Targets: 5

Scientific Paper Hit Count for: GlucoseCon, Glucose Consumption
4 Betulinic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:42  Target#:623  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page