condition found tbRes List
ART/DHA, Artemisinin: Click to Expand ⟱
Features:
Artemisinin a compound in a Chinese herb that may inhibit tumor growth and metastasis Artemisinin (antimalarial drugs)
Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044

The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer.
combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.

Summary:
- Pro-oxidant, mechanism related with iron (hence avoid supplements containing iron? Or perhaps take with iron?)
-ROS seems to affect both cancer and normal cells
- Delivery of artemisinin in conjugate form with transferrin or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness.
- Potential direct inhibitor of STAT3
- Artemisinin synergized with the glycolysis inhibitor 2DG (2-deoxy- D -glucose)
ART Combined Therapy: Allicin, Resveratrol, Curcumin, VitC (but not orally at same time), Butyrate , 2-DG, Aminolevulinic AcidG
-possible problems with liver toxicity??

-Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death.

Pathways:
- Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades.
- Downregulate HIF-1α
- By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production.
- Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply)

-Artemisinin has a half-life of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour.
BioAv 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs)
Pathways:
- induce ROS production, iron dependent (affect both cancer and normal cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Both Lowers (and raises) AntiOxidant defense in Cancer Cells: NRF2↓(contary), SOD↓, GSH↓ Catalase↓ GPx↓
- Small evidence of Raising AntiOxidant defense in Normal Cells: ROS↓(contary), NRF2↑, SOD↑(contary), GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- some small indication of inhibiting Cancer Stem Cells : CSC↓, Hh↓, β-catenin↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes),

- Selectivity: Cancer Cells vs Normal Cells


RadioS, RadioSensitizer: Click to Expand ⟱
Source:
Type:
A radiosensitizer is an agent that makes cancer cells more sensitive to the damaging effects of radiation therapy. By using a radiosensitizer, clinicians aim to enhance the effectiveness of radiation treatment by either increasing the damage incurred by tumor cells or by interfering with the cancer cells’ repair mechanisms. This can potentially allow for lower doses of radiation, reduced side effects, or improved treatment outcomes.
Pathways that help Radiosensitivity: downregulating HIF-1α, increase SIRT1, Txr

List of Natural Products with radiosensitizing properties:
-Curcumin:modulate NF-κB, STAT3 and has been shown in preclinical studies to enhance the effects of radiation by inhibiting cell survival pathways.
-Resveratrol:
-EGCG:
-Quercetin:
-Genistein:
-Parthenolide:

How radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including:
-gold nanoparticles (GNPs),
-gold triethylphosphine cyanide ([Au(SCN) (PEt3)]),
-auranofin, ceria nanoparticles (CONPs),
-curcumin and its derivatives,
-piperlongamide,
-indolequinone derivatives,
-micheliolide,
-motexafin gadolinium, and
-ethane selenide selenidazole derivatives (SeDs)


Scientific Papers found: Click to Expand⟱
3396- ART/DHA,    Progress on the study of the anticancer effects of artesunate
- Review, Var, NA
TumCP↓, reported inhibitory effects on cancer cell proliferation, invasion and migration.
TumCI↓,
TumCMig↓,
Apoptosis↑, ART has been reported to induce apoptosis, differentiation and autophagy in colorectal cancer cells by impairing angiogenesis
Diff↑,
TumAuto↑,
angioG↓,
TumCCA↑, inducing cell cycle arrest (11), upregulating ROS levels, regulating signal transduction [for example, activating the AMPK-mTOR-Unc-51-like autophagy activating kinase (ULK1) pathway in human bladder cancer cells]
ROS↑,
AMPK↑,
mTOR↑,
ChemoSen↑, ART has been shown to restore the sensitivity of a number of cancer types to chemotherapeutic drugs by modulating various signaling pathways
Tf↑, ART could upregulate the mRNA levels of transferrin receptor (a positive regulator of ferroptosis), thus inducing apoptosis and ferroptosis in A549 non-small cell lung cancer (NSCLC) cells.
Ferroptosis↑,
Ferritin↓, ferritin degradation, lipid peroxidation and ferroptosis
lipid-P↑,
CDK1↑, Cyclin-dependent kinase 1, 2, 4 and 6
CDK2↑,
CDK4↑,
CDK6↑,
SIRT1↑, Sirt1 levels
COX2↓,
IL1β↓, IL-1? ?
survivin↓, ART can selectively downregulate the expression of survivin and induce the DNA damage response in glial cells to increase cell apoptosis and cell cycle arrest, resulting in increased sensitivity to radiotherapy
DNAdam↑,
RadioS↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
AMPK↑,1,   angioG↓,1,   Apoptosis↑,1,   CDK1↑,1,   CDK2↑,1,   CDK4↑,1,   CDK6↑,1,   ChemoSen↑,1,   COX2↓,1,   Diff↑,1,   DNAdam↑,1,   Ferritin↓,1,   Ferroptosis↑,1,   IL1β↓,1,   lipid-P↑,1,   mTOR↑,1,   RadioS↑,1,   ROS↑,1,   SIRT1↑,1,   survivin↓,1,   Tf↑,1,   TumAuto↑,1,   TumCCA↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,  
Total Targets: 26

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: RadioS, RadioSensitizer
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:34  Target#:1107  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page