condition found tbRes List
ART/DHA, Artemisinin: Click to Expand ⟱
Features:
Artemisinin a compound in a Chinese herb that may inhibit tumor growth and metastasis Artemisinin (antimalarial drugs)
Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044

The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer.
combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.

Summary:
- Pro-oxidant, mechanism related with iron (hence avoid supplements containing iron? Or perhaps take with iron?)
-ROS seems to affect both cancer and normal cells
- Delivery of artemisinin in conjugate form with transferrin or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness.
- Potential direct inhibitor of STAT3
- Artemisinin synergized with the glycolysis inhibitor 2DG (2-deoxy- D -glucose)
ART Combined Therapy: Allicin, Resveratrol, Curcumin, VitC (but not orally at same time), Butyrate , 2-DG, Aminolevulinic AcidG
-possible problems with liver toxicity??

-Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death.

Pathways:
- Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades.
- Downregulate HIF-1α
- By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production.
- Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply)

-Artemisinin has a half-life of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour.
BioAv 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs)
Pathways:
- induce ROS production, iron dependent (affect both cancer and normal cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Both Lowers (and raises) AntiOxidant defense in Cancer Cells: NRF2↓(contary), SOD↓, GSH↓ Catalase↓ GPx↓
- Small evidence of Raising AntiOxidant defense in Normal Cells: ROS↓(contary), NRF2↑, SOD↑(contary), GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓">NF-kB, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- some small indication of inhibiting Cancer Stem Cells : CSC↓, Hh↓, β-catenin↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes),

- Selectivity: Cancer Cells vs Normal Cells


NF-kB, Nuclear factor kappa B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
NF-kB signaling
Nuclear factor kappa B (NF-κB) is a transcription factor that plays a crucial role in regulating immune response, inflammation, cell proliferation, and survival.
NF-κB is often found to be constitutively active in many types of cancer cells. This persistent activation can promote tumorigenesis by enhancing cell survival, proliferation, and metastasis.


Scientific Papers found: Click to Expand⟱
2324- ART/DHA,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
PKM2↓, DHA effectively suppressed aerobic glycolysis and ESCC progression by downregulating PKM2 expression in esophageal squamous cell carcinoma (ESCC) and ESCC cells
GLUT1↓, DHA inhibited leukemia cell K562 proliferation by suppressing GLUT1 and PKM2 levels, thereby regulating glucose uptake and inhibiting aerobic glycolysis
Glycolysis↓,
Akt↓, In LNCaP cells, DHA reduced Akt/mTOR and HIF-1α activity, leading to decreased expression of GLUT1, HK2, PKM2, and LDH and subsequent inhibition of aerobic glycolysis
mTOR↓,
Hif1a↓,
HK2↓,
LDH↓,
NF-kB↓, DHA was also found to inhibit the NF-κB signaling pathway to prevent GLUT1 translocation to the plasma membrane, thereby inhibiting the progression of non-small-cell lung cancer (NSCLC) cells via targeting glucose metabolism

3392- ART/DHA,    Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK signaling pathways
- in-vitro, Nor, Hep3B - in-vivo, NA, NA
*Inflam↓, anti-inflammatory effects of artemisinin in TPA-induced skin inflammation in mice.
*NF-kB↓, artemisinin significantly inhibited the expression of NF-?B reporter gene induced by TNF-? in a dose-dependent manner
*ROS↓, artemisinin significantly impaired the ROS production and phosphorylation of p38 and ERK,
*p‑p38↓,
*p‑ERK↓,

3391- ART/DHA,    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug
- Review, Var, NA
TumCP↓, inhibiting cancer proliferation, metastasis, and angiogenesis.
TumMeta↓,
angioG↓,
TumVol↓, reduces tumor volume and progression
BioAv↓, artemisinin has low solubility in water or oil, poor bioavailability, and a short half-life in vivo (~2.5 h)
Half-Life↓,
BioAv↑, semisynthetic derivatives of artemisinin such as artesunate, arteeter, artemether, and artemisone have been effectively used as antimalarials with good clinical efficacy and tolerability
eff↑, preloading of cancer cells with iron or iron-saturated holotransferrin (diferric transferrin) triggers artemisinin cytotoxicity
eff↓, Similarly, treatment with desferroxamine (DFO), an iron chelator, renders compounds inactive
ROS↑, ROS generation may contribute with the selective action of artemisinin on cancer cells.
selectivity↑, Tumor cells have enhanced vulnerability to ROS damage as they exhibit lower expression of antioxidant enzymes such as superoxide dismutase, catalase, and gluthatione peroxidase compared to that of normal cells
TumCCA↑, G2/M, decreased survivin
survivin↓,
BAX↑, Increased Bax, activation of caspase 3,8,9 Decreased Bc12, Cdc25B, cyclin B1, NF-κB
Casp3↓,
Casp8↑,
Casp9↑,
CDC25↓,
CycB↓,
NF-kB↓,
cycD1↓, decreased cyclin D, E, CDK2-4, E2F1 Increased Cip 1/p21, Kip 1/p27
cycE↓,
E2Fs↓,
P21↑,
p27↑,
ADP:ATP↑, Increased poly ADP-ribose polymerase Decreased MDM2
MDM2↓,
VEGF↓, Decreased VEGF
IL8↓, Decreased NF-κB DNA binding [74, 76] IL-8, COX2, MMP9
COX2↓,
MMP9↓,
ER Stress↓, ER stress, degradation of c-MYC
cMyc↓,
GRP78/BiP↑, Increased GRP78
DNAdam↑, DNA damage
AP-1↓, Decreased NF-κB, AP-1, Decreased activation of MMP2, MMP9, Decreased PKC α/Raf/ERK and JNK
MMP2↓,
PKCδ↓,
Raf↓,
ERK↓,
JNK↓,
PCNA↓, G2, decreased PCNA, cyclin B1, D1, E1 [82] CDK2-4, E2F1, DNA-PK, DNA-topo1, JNK VEGF
CDK2↓,
CDK4↓,
TOP2↓, Inhibition of topoisomerase II a
uPA↓, Decreased MMP2, transactivation of AP-1 [56, 88] NF-κB uPA promoter [88] MMP7
MMP7↓,
TIMP2↑, Increased TIMP2, Cdc42, E cadherin
Cdc42↑,
E-cadherin↑,

3385- ART/DHA,    Interaction of artemisinin protects the activity of antioxidant enzyme catalase: A biophysical study
- Study, NA, NA
*NF-kB↑, protective role of derivative of ART was observed in asthma condition where restoration of three fold reduced catalase activity was found by promoting Nuclear factor erythroid-2-related factor (Nrf2)
*Catalase↑,

3382- ART/DHA,    Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge?
- Review, Var, NA
AntiCan↑, antimalarial drug, artemisinin that has shown anticancer activities in vitro and in vivo.
toxicity↑, safety of artemisinins in long-term cancer therapy requires further investigation.
Ferroptosis↑, Artemisinins acts against cancer cells via various pathways such as inducing apoptosis (Zhu et al., 2014; Zuo et al., 2014) and ferroptosis via the generation of reactive oxygen species (ROS) (Zhu et al., 2021) and causing cell cycle arrest
ROS↑,
TumCCA↑,
BioAv↝, absolute bioavailability was estimated to be 21.6%. ART has good solubility and is not lipophilic
eff↝, ART would not distribute well to the tissues and might be more effective in treating cancers such as leukemia, hepatocellular carcinoma (HCC), or renal cell carcinoma because the liver and kidney are highly perfused organs.
Half-Life↓, Pharmacokinetic studies showed a relatively short t1/2 of artemisinins. For ART, t1/2 was 0.41 h
Ferritin↓, Figure 3
GPx4↓,
NADPH↓,
GSH↓,
BAX↑,
Cyt‑c↑,
cl‑Casp3↑,
VEGF↓, angiogenesis
IL8↓,
COX2↓,
MMP9↓,
E-cadherin↑,
MMP2↓,
NF-kB↓,
p16↑, cell cycle arrest
CDK4↓,
cycD1↓,
p62↓, autophagy
LC3II↑,
EMT↓, suppressing EMT and CSCs
CSCs↓,
Wnt↓, Depress Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
uPA↓, Inhibit u-PA activity, protein and mRNA expression
TumAuto↑, Emerging evidence suggests that autophagy induction is one of the molecular mechanisms underlying anticancer activity of artemisinins
angioG↓, Inhibition of Angiogenesis
ChemoSen↑, Many studies also reported that the use of artemisinins sensitized cancer cells to conventional chemotherapy and exerted a synergistic effect on apoptosis, inhibition of cell growth, and a reduction of cell viability, leading to a lower IC50 value

558- ART/DHA,    Artemisinin and Its Synthetic Derivatives as a Possible Therapy for Cancer
- Review, NA, NA
ROS↑,
oncosis↑, low doses of artesunate induced oncosis-like cell death
Apoptosis↑, higher doses of art
LysoPr↑,
TumAuto↑,
Wnt/(β-catenin)↑,
AMP↓,
NF-kB↓,
Myc↓,
CREBBP↓,
mTOR↓,
E-cadherin↑,

556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓,
IL1↓, IL-1β
TNF-α↓,
TGF-β↓, TGF-β1
NF-kB↓,
MIP2↓,
PGE2↓,
NO↓,
Hif1a↓,
KDR/FLK-1↓,
VEGF↓,
MMP2↓,
TIMP2↑,
ITGB1↑,
NCAM↑,
p‑ATM↑,
p‑ATR↑,
p‑CHK1↑,
p‑Chk2↑,
Wnt/(β-catenin)↓,
PI3K↓,
Akt↓,
ERK↓, ERK1/2
cMyc↓,
mTOR↓,
survivin↓,
cMET↓,
EGFR↓,
cycD1↓,
cycE1↓,
CDK4/6↓,
p16↑,
p27↑,
Apoptosis↑,
TumAuto↑,
Ferroptosis↑,
oncosis↑,
TumCCA↑, G0/G1 into M phase, G0/G1 into S phase, G1 and G2/M
ROS↑, ovarian cancer cell line model, artesunate induced oxidative stress, DNA double-strand breaks (DSBs) and downregulation of RAD51 foci
DNAdam↑,
RAD51↓,
HR↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↑,1,   Akt↓,2,   AMP↓,1,   angioG↓,2,   AntiCan↑,1,   AP-1↓,1,   Apoptosis↑,2,   p‑ATM↑,1,   p‑ATR↑,1,   BAX↑,2,   BioAv↓,1,   BioAv↑,1,   BioAv↝,1,   Casp3↓,1,   cl‑Casp3↑,1,   Casp8↑,1,   Casp9↑,1,   CDC25↓,1,   Cdc42↑,1,   CDK2↓,1,   CDK4↓,2,   CDK4/6↓,1,   ChemoSen↑,1,   p‑CHK1↑,1,   p‑Chk2↑,1,   cMET↓,1,   cMyc↓,2,   COX2↓,2,   CREBBP↓,1,   CSCs↓,1,   CycB↓,1,   cycD1↓,3,   cycE↓,1,   cycE1↓,1,   Cyt‑c↑,1,   DNAdam↑,2,   E-cadherin↑,3,   E2Fs↓,1,   eff↓,1,   eff↑,1,   eff↝,1,   EGFR↓,1,   EMT↓,1,   ER Stress↓,1,   ERK↓,2,   Ferritin↓,1,   Ferroptosis↑,2,   GLUT1↓,1,   Glycolysis↓,1,   GPx4↓,1,   GRP78/BiP↑,1,   GSH↓,1,   Half-Life↓,2,   Hif1a↓,2,   HK2↓,1,   HR↓,1,   IL1↓,1,   IL6↓,1,   IL8↓,2,   ITGB1↑,1,   JNK↓,1,   KDR/FLK-1↓,1,   LC3II↑,1,   LDH↓,1,   LysoPr↑,1,   MDM2↓,1,   MIP2↓,1,   MMP2↓,3,   MMP7↓,1,   MMP9↓,2,   mTOR↓,3,   Myc↓,1,   NADPH↓,1,   NCAM↑,1,   NF-kB↓,5,   NO↓,1,   oncosis↑,2,   p16↑,2,   P21↑,1,   p27↑,2,   p62↓,1,   PCNA↓,1,   PGE2↓,1,   PI3K↓,1,   PKCδ↓,1,   PKM2↓,1,   RAD51↓,1,   Raf↓,1,   ROS↑,4,   selectivity↑,1,   survivin↓,2,   TGF-β↓,1,   TIMP2↑,2,   TNF-α↓,1,   TOP2↓,1,   toxicity↑,1,   TumAuto↑,3,   TumCCA↑,3,   TumCP↓,1,   TumMeta↓,1,   TumVol↓,1,   uPA↓,2,   VEGF↓,3,   Wnt↓,1,   Wnt/(β-catenin)↓,1,   Wnt/(β-catenin)↑,1,   β-catenin/ZEB1↓,1,  
Total Targets: 107

Results for Effect on Normal Cells:
Catalase↑,1,   p‑ERK↓,1,   Inflam↓,1,   NF-kB↓,1,   NF-kB↑,1,   p‑p38↓,1,   ROS↓,1,  
Total Targets: 7

Scientific Paper Hit Count for: NF-kB, Nuclear factor kappa B
7 Artemisinin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:34  Target#:214  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page