condition found tbRes List
ART/DHA, Artemisinin: Click to Expand ⟱
Features:
Artemisinin a compound in a Chinese herb that may inhibit tumor growth and metastasis Artemisinin (antimalarial drugs)
Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044

The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer.
combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.

Summary:
- Pro-oxidant, mechanism related with iron (hence avoid supplements containing iron? Or perhaps take with iron?)
-ROS seems to affect both cancer and normal cells
- Delivery of artemisinin in conjugate form with transferrin or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness.
- Potential direct inhibitor of STAT3
- Artemisinin synergized with the glycolysis inhibitor 2DG (2-deoxy- D -glucose)
ART Combined Therapy: Allicin, Resveratrol, Curcumin, VitC (but not orally at same time), Butyrate , 2-DG, Aminolevulinic AcidG
-possible problems with liver toxicity??

-Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death.

Pathways:
- Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades.
- Downregulate HIF-1α
- By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production.
- Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply)

-Artemisinin has a half-life of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour.
BioAv 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs)
Pathways:
- induce ROS production, iron dependent (affect both cancer and normal cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Both Lowers (and raises) AntiOxidant defense in Cancer Cells: NRF2↓(contary), SOD↓, GSH↓ Catalase↓ GPx↓
- Small evidence of Raising AntiOxidant defense in Normal Cells: ROS↓(contary), NRF2↑, SOD↑(contary), GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH, LDH">LDHA↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- some small indication of inhibiting Cancer Stem Cells : CSC↓, Hh↓, β-catenin↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes),

- Selectivity: Cancer Cells vs Normal Cells


LDH, Lactate Dehydrogenase: Click to Expand ⟱
Source:
Type:
LDH is a general term that refers to the enzyme that catalyzes the interconversion of lactate and pyruvate. LDH is a tetrameric enzyme, meaning it is composed of four subunits.
LDH refers to the enzyme as a whole, while LDHA specifically refers to the M subunit. Elevated LDHA levels are often associated with poor prognosis and aggressive tumor behavior, similar to elevated LDH levels.

However, it's worth noting that some studies have shown that LDHA is a more specific and sensitive biomarker for cancer than total LDH, as it is more closely associated with the Warburg effect and cancer metabolism.

Dysregulated LDH activity contributes significantly to cancer development, promoting the Warburg effect (Chen et al., 2007), which involves increased glucose uptake and lactate production, even in the presence of oxygen, to meet the energy demands of rapidly proliferating cancer cells (Warburg and Minami, 1923; Dai et al., 2016b). LDHA overexpression favors pyruvate to lactate conversion, leading to tumor microenvironment acidification and aiding cancer progression and metastasis.

Inhibitors:
Flavonoids, a group of polyphenols abundant in fruit, vegetables, and medicinal plants, function as LDH inhibitors.

• Galloflavin: A flavonoid compound found in the plant Galphimia gracilis, which has been shown to inhibit LDH and have anti-cancer activity.
• Fisetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Quercetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Kaempferol: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Resveratrol: A polyphenol compound found in grapes and other plants, which has been shown to inhibit LDH and have anti-cancer activity.
• Curcumin: A polyphenol compound found in turmeric, which has been shown to inhibit LDH and have anti-cancer activity.
• Berberine: A compound found in the plant Berberis, which has been shown to inhibit LDH and have anti-cancer activity.
• Honokiol: A lignan compound found in the plant Magnolia, which has been shown to inhibit LDH and have anti-cancer activity.
• Silibinin: A flavonoid compound found in milk thistle, which has been shown to inhibit LDH and have anti-cancer activity.
Others:Ursolic acid, Oleanolic acid, Limonin, Allicin (garlic), Taurine


Scientific Papers found: Click to Expand⟱
2324- ART/DHA,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
PKM2↓, DHA effectively suppressed aerobic glycolysis and ESCC progression by downregulating PKM2 expression in esophageal squamous cell carcinoma (ESCC) and ESCC cells
GLUT1↓, DHA inhibited leukemia cell K562 proliferation by suppressing GLUT1 and PKM2 levels, thereby regulating glucose uptake and inhibiting aerobic glycolysis
Glycolysis↓,
Akt↓, In LNCaP cells, DHA reduced Akt/mTOR and HIF-1α activity, leading to decreased expression of GLUT1, HK2, PKM2, and LDH and subsequent inhibition of aerobic glycolysis
mTOR↓,
Hif1a↓,
HK2↓,
LDH↓,
NF-kB↓, DHA was also found to inhibit the NF-κB signaling pathway to prevent GLUT1 translocation to the plasma membrane, thereby inhibiting the progression of non-small-cell lung cancer (NSCLC) cells via targeting glucose metabolism


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   GLUT1↓,1,   Glycolysis↓,1,   Hif1a↓,1,   HK2↓,1,   LDH↓,1,   mTOR↓,1,   NF-kB↓,1,   PKM2↓,1,  
Total Targets: 9

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: LDH, Lactate Dehydrogenase
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:34  Target#:906  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page