condition found tbRes List
ART/DHA, Artemisinin: Click to Expand ⟱
Features:
Artemisinin a compound in a Chinese herb that may inhibit tumor growth and metastasis Artemisinin (antimalarial drugs)
Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044

The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer.
combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.

Summary:
- Pro-oxidant, mechanism related with iron (hence avoid supplements containing iron? Or perhaps take with iron?)
-ROS seems to affect both cancer and normal cells
- Delivery of artemisinin in conjugate form with transferrin or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness.
- Potential direct inhibitor of STAT3
- Artemisinin synergized with the glycolysis inhibitor 2DG (2-deoxy- D -glucose)
ART Combined Therapy: Allicin, Resveratrol, Curcumin, VitC (but not orally at same time), Butyrate , 2-DG, Aminolevulinic AcidG
-possible problems with liver toxicity??

-Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death.

Pathways:
- Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades.
- Downregulate HIF-1α
- By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production.
- Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply)

-Artemisinin has a half-life of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour.
BioAv 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs)
Pathways:
- induce ROS production, iron dependent (affect both cancer and normal cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Both Lowers (and raises) AntiOxidant defense in Cancer Cells: NRF2↓(contary), SOD↓, GSH↓ Catalase↓ GPx↓
- Small evidence of Raising AntiOxidant defense in Normal Cells: ROS↓(contary), NRF2↑, SOD↑(contary), GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- some small indication of inhibiting Cancer Stem Cells : CSC↓, Hh↓, β-catenin↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes),

- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
2572- ART/DHA,  SRF,    Antileukemic efficacy of a potent artemisinin combined with sorafenib and venetoclax
- in-vitro, AML, NA
CHOP↑, Artemisinins increased CHOP, decreased MCL1,
Mcl-1↓,
ChemoSen↑, synergized with BCL2 inhibitors and SOR against human acute leukemia cells in vitro.
selectivity↑, The SAV combination potently inhibited leukemia cell growth but spared normal HSPCs

2581- ART/DHA,  PB,    Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells
- in-vitro, AML, NA
eff↑, The combination of 20 microM DHA and 1 mM sodium butyrate killed all Molt-4 cells at the 24-hour time-point and did not significantly affect lymphocytes.
selectivity↑,

2574- ART/DHA,    Artemisinin: A Promising Adjunct for Cancer Therapy
- Review, Var, NA
selectivity↑, the high levels of iron intake constitute artemisinin as a targeted therapy for cancer and make cancer cells more susceptible to the cytotoxic effects of the compound
eff↑, a recent study conducted by Lin Qingsong et al. found that the addition of aminolevulinic acid (ALA) enhances the anticancer properties of artemisinin against colorectal cancer cell lines

2582- ART/DHA,  5-ALA,    Mechanistic Investigation of the Specific Anticancer Property of Artemisinin and Its Combination with Aminolevulinic Acid for Enhanced Anticolorectal Cancer Activity
- in-vivo, CRC, HCT116 - in-vitro, CRC, HCT116
eff↑, Guided by this mechanism, the specific cytotoxicity of ART toward CRC cells can be dramatically enhanced with the addition of aminolevulinic acid (ALA), a clinically used heme synthesis precursor, to increase heme levels
ROS↑, We found that artesunate significantly increased ROS levels (Figure 4f) in HCT116 cells
selectivity↑, In contrast, heme levels in normal cells and tissues are strictly controlled and maintained at lower levels, minimizing ART’s activation, which could possibly explain the specificity and low toxicity of ART.
TumCG↓, Strikingly, the combination of artesunate and ALA showed significant tumor growth delay in comparison to both the control and the artesunate or ALA single treatment groups
toxicity↓, Since both artesunate and ALA are clinically used and well-tolerated, (52) this combination has the potential to be safely applied to subsequent clinical testing

2570- ART/DHA,    Discovery, mechanisms of action and combination therapy of artemisinin
- Review, Nor, NA
*BioAv↓, Because the parent drug of artemisinin is poorly soluble in water or oil, the carbonyl group of artemisinin was reduced to obtain DHA
*Half-Life↓, artemisinins also have a very short elimination half-life (∼1 h)
*toxicity↓, Artemisinin and its derivatives are generally safe and well-tolerated.
*ROS↑, Artemisinins are considered prodrugs that are activated to generate carbon-centered free radicals or reactive oxygen species (ROS).
GSH↓, earlier studies suggest that artemisinins modulate parasite oxidative stress and reduce the levels of antioxidants and glutathione (GSH) in the parasite
selectivity↑, Many publications corroborate the essence of iron-dependent bioactivation

3391- ART/DHA,    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug
- Review, Var, NA
TumCP↓, inhibiting cancer proliferation, metastasis, and angiogenesis.
TumMeta↓,
angioG↓,
TumVol↓, reduces tumor volume and progression
BioAv↓, artemisinin has low solubility in water or oil, poor bioavailability, and a short half-life in vivo (~2.5 h)
Half-Life↓,
BioAv↑, semisynthetic derivatives of artemisinin such as artesunate, arteeter, artemether, and artemisone have been effectively used as antimalarials with good clinical efficacy and tolerability
eff↑, preloading of cancer cells with iron or iron-saturated holotransferrin (diferric transferrin) triggers artemisinin cytotoxicity
eff↓, Similarly, treatment with desferroxamine (DFO), an iron chelator, renders compounds inactive
ROS↑, ROS generation may contribute with the selective action of artemisinin on cancer cells.
selectivity↑, Tumor cells have enhanced vulnerability to ROS damage as they exhibit lower expression of antioxidant enzymes such as superoxide dismutase, catalase, and gluthatione peroxidase compared to that of normal cells
TumCCA↑, G2/M, decreased survivin
survivin↓,
BAX↑, Increased Bax, activation of caspase 3,8,9 Decreased Bc12, Cdc25B, cyclin B1, NF-κB
Casp3↓,
Casp8↑,
Casp9↑,
CDC25↓,
CycB↓,
NF-kB↓,
cycD1↓, decreased cyclin D, E, CDK2-4, E2F1 Increased Cip 1/p21, Kip 1/p27
cycE↓,
E2Fs↓,
P21↑,
p27↑,
ADP:ATP↑, Increased poly ADP-ribose polymerase Decreased MDM2
MDM2↓,
VEGF↓, Decreased VEGF
IL8↓, Decreased NF-κB DNA binding [74, 76] IL-8, COX2, MMP9
COX2↓,
MMP9↓,
ER Stress↓, ER stress, degradation of c-MYC
cMyc↓,
GRP78/BiP↑, Increased GRP78
DNAdam↑, DNA damage
AP-1↓, Decreased NF-κB, AP-1, Decreased activation of MMP2, MMP9, Decreased PKC α/Raf/ERK and JNK
MMP2↓,
PKCδ↓,
Raf↓,
ERK↓,
JNK↓,
PCNA↓, G2, decreased PCNA, cyclin B1, D1, E1 [82] CDK2-4, E2F1, DNA-PK, DNA-topo1, JNK VEGF
CDK2↓,
CDK4↓,
TOP2↓, Inhibition of topoisomerase II a
uPA↓, Decreased MMP2, transactivation of AP-1 [56, 88] NF-κB uPA promoter [88] MMP7
MMP7↓,
TIMP2↑, Increased TIMP2, Cdc42, E cadherin
Cdc42↑,
E-cadherin↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↑,1,   angioG↓,1,   AP-1↓,1,   BAX↑,1,   BioAv↓,1,   BioAv↑,1,   Casp3↓,1,   Casp8↑,1,   Casp9↑,1,   CDC25↓,1,   Cdc42↑,1,   CDK2↓,1,   CDK4↓,1,   ChemoSen↑,1,   CHOP↑,1,   cMyc↓,1,   COX2↓,1,   CycB↓,1,   cycD1↓,1,   cycE↓,1,   DNAdam↑,1,   E-cadherin↑,1,   E2Fs↓,1,   eff↓,1,   eff↑,4,   ER Stress↓,1,   ERK↓,1,   GRP78/BiP↑,1,   GSH↓,1,   Half-Life↓,1,   IL8↓,1,   JNK↓,1,   Mcl-1↓,1,   MDM2↓,1,   MMP2↓,1,   MMP7↓,1,   MMP9↓,1,   NF-kB↓,1,   P21↑,1,   p27↑,1,   PCNA↓,1,   PKCδ↓,1,   Raf↓,1,   ROS↑,2,   selectivity↑,6,   survivin↓,1,   TIMP2↑,1,   TOP2↓,1,   toxicity↓,1,   TumCCA↑,1,   TumCG↓,1,   TumCP↓,1,   TumMeta↓,1,   TumVol↓,1,   uPA↓,1,   VEGF↓,1,  
Total Targets: 56

Results for Effect on Normal Cells:
BioAv↓,1,   Half-Life↓,1,   ROS↑,1,   toxicity↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: selectivity, selectivity
6 Artemisinin
1 Sorafenib (brand name Nexavar)
1 Phenylbutyrate
1 5-Aminolevulinic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:34  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page