condition found tbRes List
ART/DHA, Artemisinin: Click to Expand ⟱
Features:
Artemisinin a compound in a Chinese herb that may inhibit tumor growth and metastasis Artemisinin (antimalarial drugs)
Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044

The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer.
combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.

Summary:
- Pro-oxidant, mechanism related with iron (hence avoid supplements containing iron? Or perhaps take with iron?)
-ROS seems to affect both cancer and normal cells
- Delivery of artemisinin in conjugate form with transferrin or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness.
- Potential direct inhibitor of STAT3
- Artemisinin synergized with the glycolysis inhibitor 2DG (2-deoxy- D -glucose)
ART Combined Therapy: Allicin, Resveratrol, Curcumin, VitC (but not orally at same time), Butyrate , 2-DG, Aminolevulinic AcidG
-possible problems with liver toxicity??

-Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death.

Pathways:
- Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades.
- Downregulate HIF-1α
- By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production.
- Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply)

-Artemisinin has a half-life of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour.
BioAv 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs)
Pathways:
- induce ROS production, iron dependent (affect both cancer and normal cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Both Lowers (and raises) AntiOxidant defense in Cancer Cells: NRF2↓(contary), SOD↓, GSH↓ Catalase↓ GPx↓
- Small evidence of Raising AntiOxidant defense in Normal Cells: ROS↓(contary), NRF2↑, SOD↑(contary), GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- some small indication of inhibiting Cancer Stem Cells : CSC↓, Hh↓, β-catenin↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes),

- Selectivity: Cancer Cells vs Normal Cells


TumCMig, Tumor cell migration: Click to Expand ⟱
Source:
Type:
Tumor cell migration is a critical process in cancer progression and metastasis, which is the spread of cancer cells from the primary tumor to distant sites in the body.


Scientific Papers found: Click to Expand⟱
2578- ART/DHA,  RES,    Synergic effects of artemisinin and resveratrol in cancer cells
- in-vitro, Liver, HepG2 - in-vitro, Cerv, HeLa
Dose↝, The combination of ART and Res exhibited the strongest anticancer effect at the ratio of 1:2 (ART to Res).
TumCMig↓, combination of the two drugs also markedly reduced the ability of cell migration
Apoptosis↑, Apoptosis analysis showed that combination of ART and Res significantly increased the apoptosis and necrosis rather than use singly
necrosis↑,
ROS↑, ROS levels were elevated by combining ART with Res.
eff↑, the data suggested that the IC50 of the combination of ART and Res is lower than that of each drug used alone.

3396- ART/DHA,    Progress on the study of the anticancer effects of artesunate
- Review, Var, NA
TumCP↓, reported inhibitory effects on cancer cell proliferation, invasion and migration.
TumCI↓,
TumCMig↓,
Apoptosis↑, ART has been reported to induce apoptosis, differentiation and autophagy in colorectal cancer cells by impairing angiogenesis
Diff↑,
TumAuto↑,
angioG↓,
TumCCA↑, inducing cell cycle arrest (11), upregulating ROS levels, regulating signal transduction [for example, activating the AMPK-mTOR-Unc-51-like autophagy activating kinase (ULK1) pathway in human bladder cancer cells]
ROS↑,
AMPK↑,
mTOR↑,
ChemoSen↑, ART has been shown to restore the sensitivity of a number of cancer types to chemotherapeutic drugs by modulating various signaling pathways
Tf↑, ART could upregulate the mRNA levels of transferrin receptor (a positive regulator of ferroptosis), thus inducing apoptosis and ferroptosis in A549 non-small cell lung cancer (NSCLC) cells.
Ferroptosis↑,
Ferritin↓, ferritin degradation, lipid peroxidation and ferroptosis
lipid-P↑,
CDK1↑, Cyclin-dependent kinase 1, 2, 4 and 6
CDK2↑,
CDK4↑,
CDK6↑,
SIRT1↑, Sirt1 levels
COX2↓,
IL1β↓, IL-1? ?
survivin↓, ART can selectively downregulate the expression of survivin and induce the DNA damage response in glial cells to increase cell apoptosis and cell cycle arrest, resulting in increased sensitivity to radiotherapy
DNAdam↑,
RadioS↑,

570- ART/DHA,    Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling
- vitro+vivo, NSCLC, A549 - vitro+vivo, NSCLC, H1299
TumCCA↑, arresting cell cycle in G1 phase.
CSCs↓,
TumCI↓,
TumCMig↓,
TumCG↓,
Wnt/(β-catenin)↓, main pathway
Nanog↓,
SOX2↓,
OCT4↓, oct3/4
N-cadherin↓,
Vim↓,
E-cadherin↑,

574- ART/DHA,    Dihydroartemisinin suppresses glioma proliferation and invasion via inhibition of the ADAM17 pathway
TumCP↓,
TumCMig↓,
TumCI↓,
MMP17↓,
p‑EGFR↓,
p‑Akt↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
p‑Akt↓,1,   AMPK↑,1,   angioG↓,1,   Apoptosis↑,2,   CDK1↑,1,   CDK2↑,1,   CDK4↑,1,   CDK6↑,1,   ChemoSen↑,1,   COX2↓,1,   CSCs↓,1,   Diff↑,1,   DNAdam↑,1,   Dose↝,1,   E-cadherin↑,1,   eff↑,1,   p‑EGFR↓,1,   Ferritin↓,1,   Ferroptosis↑,1,   IL1β↓,1,   lipid-P↑,1,   MMP17↓,1,   mTOR↑,1,   N-cadherin↓,1,   Nanog↓,1,   necrosis↑,1,   OCT4↓,1,   RadioS↑,1,   ROS↑,2,   SIRT1↑,1,   SOX2↓,1,   survivin↓,1,   Tf↑,1,   TumAuto↑,1,   TumCCA↑,2,   TumCG↓,1,   TumCI↓,3,   TumCMig↓,4,   TumCP↓,2,   Vim↓,1,   Wnt/(β-catenin)↓,1,  
Total Targets: 41

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: TumCMig, Tumor cell migration
4 Artemisinin
1 Resveratrol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:34  Target#:326  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page