condition found tbRes List
ART/DHA, Artemisinin: Click to Expand ⟱
Features:
Artemisinin a compound in a Chinese herb that may inhibit tumor growth and metastasis Artemisinin (antimalarial drugs)
Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044

The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer.
combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.

Summary:
- Pro-oxidant, mechanism related with iron (hence avoid supplements containing iron? Or perhaps take with iron?)
-ROS seems to affect both cancer and normal cells
- Delivery of artemisinin in conjugate form with transferrin or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness.
- Potential direct inhibitor of STAT3
- Artemisinin synergized with the glycolysis inhibitor 2DG (2-deoxy- D -glucose)
ART Combined Therapy: Allicin, Resveratrol, Curcumin, VitC (but not orally at same time), Butyrate , 2-DG, Aminolevulinic AcidG
-possible problems with liver toxicity??

-Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death.

Pathways:
- Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades.
- Downregulate HIF-1α
- By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production.
- Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply)

-Artemisinin has a half-life of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour.
BioAv 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs)
Pathways:
- induce ROS production, iron dependent (affect both cancer and normal cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Both Lowers (and raises) AntiOxidant defense in Cancer Cells: NRF2↓(contary), SOD↓, GSH↓ Catalase↓ GPx↓
- Small evidence of Raising AntiOxidant defense in Normal Cells: ROS↓(contary), NRF2↑, SOD↑(contary), GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- some small indication of inhibiting Cancer Stem Cells : CSC↓, Hh↓, β-catenin↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes),

- Selectivity: Cancer Cells vs Normal Cells


angioG, angiogenesis: Click to Expand ⟱
Source:
Type:
Process through which new blood vessels.
Angiogenesis, the process of new blood vessel formation from pre-existing vessels, plays a crucial role in cancer progression and metastasis. Tumors require a blood supply to grow beyond a certain size and to spread to other parts of the body.
Vascular Endothelial Growth Factor (VEGF): VEGF is one of the most important pro-angiogenic factors. It stimulates endothelial cell proliferation and migration, leading to the formation of new blood vessels. Many tumors overexpress VEGF, which correlates with poor prognosis.
Hypoxia-Inducible Factor (HIF): In response to low oxygen levels (hypoxia), tumors can activate HIF, which in turn promotes the expression of VEGF and other angiogenic factors. This mechanism allows tumors to adapt to their microenvironment and sustain growth.


Scientific Papers found: Click to Expand⟱
3396- ART/DHA,    Progress on the study of the anticancer effects of artesunate
- Review, Var, NA
TumCP↓, reported inhibitory effects on cancer cell proliferation, invasion and migration.
TumCI↓,
TumCMig↓,
Apoptosis↑, ART has been reported to induce apoptosis, differentiation and autophagy in colorectal cancer cells by impairing angiogenesis
Diff↑,
TumAuto↑,
angioG↓,
TumCCA↑, inducing cell cycle arrest (11), upregulating ROS levels, regulating signal transduction [for example, activating the AMPK-mTOR-Unc-51-like autophagy activating kinase (ULK1) pathway in human bladder cancer cells]
ROS↑,
AMPK↑,
mTOR↑,
ChemoSen↑, ART has been shown to restore the sensitivity of a number of cancer types to chemotherapeutic drugs by modulating various signaling pathways
Tf↑, ART could upregulate the mRNA levels of transferrin receptor (a positive regulator of ferroptosis), thus inducing apoptosis and ferroptosis in A549 non-small cell lung cancer (NSCLC) cells.
Ferroptosis↑,
Ferritin↓, ferritin degradation, lipid peroxidation and ferroptosis
lipid-P↑,
CDK1↑, Cyclin-dependent kinase 1, 2, 4 and 6
CDK2↑,
CDK4↑,
CDK6↑,
SIRT1↑, Sirt1 levels
COX2↓,
IL1β↓, IL-1? ?
survivin↓, ART can selectively downregulate the expression of survivin and induce the DNA damage response in glial cells to increase cell apoptosis and cell cycle arrest, resulting in increased sensitivity to radiotherapy
DNAdam↑,
RadioS↑,

3391- ART/DHA,    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug
- Review, Var, NA
TumCP↓, inhibiting cancer proliferation, metastasis, and angiogenesis.
TumMeta↓,
angioG↓,
TumVol↓, reduces tumor volume and progression
BioAv↓, artemisinin has low solubility in water or oil, poor bioavailability, and a short half-life in vivo (~2.5 h)
Half-Life↓,
BioAv↑, semisynthetic derivatives of artemisinin such as artesunate, arteeter, artemether, and artemisone have been effectively used as antimalarials with good clinical efficacy and tolerability
eff↑, preloading of cancer cells with iron or iron-saturated holotransferrin (diferric transferrin) triggers artemisinin cytotoxicity
eff↓, Similarly, treatment with desferroxamine (DFO), an iron chelator, renders compounds inactive
ROS↑, ROS generation may contribute with the selective action of artemisinin on cancer cells.
selectivity↑, Tumor cells have enhanced vulnerability to ROS damage as they exhibit lower expression of antioxidant enzymes such as superoxide dismutase, catalase, and gluthatione peroxidase compared to that of normal cells
TumCCA↑, G2/M, decreased survivin
survivin↓,
BAX↑, Increased Bax, activation of caspase 3,8,9 Decreased Bc12, Cdc25B, cyclin B1, NF-κB
Casp3↓,
Casp8↑,
Casp9↑,
CDC25↓,
CycB↓,
NF-kB↓,
cycD1↓, decreased cyclin D, E, CDK2-4, E2F1 Increased Cip 1/p21, Kip 1/p27
cycE↓,
E2Fs↓,
P21↑,
p27↑,
ADP:ATP↑, Increased poly ADP-ribose polymerase Decreased MDM2
MDM2↓,
VEGF↓, Decreased VEGF
IL8↓, Decreased NF-κB DNA binding [74, 76] IL-8, COX2, MMP9
COX2↓,
MMP9↓,
ER Stress↓, ER stress, degradation of c-MYC
cMyc↓,
GRP78/BiP↑, Increased GRP78
DNAdam↑, DNA damage
AP-1↓, Decreased NF-κB, AP-1, Decreased activation of MMP2, MMP9, Decreased PKC α/Raf/ERK and JNK
MMP2↓,
PKCδ↓,
Raf↓,
ERK↓,
JNK↓,
PCNA↓, G2, decreased PCNA, cyclin B1, D1, E1 [82] CDK2-4, E2F1, DNA-PK, DNA-topo1, JNK VEGF
CDK2↓,
CDK4↓,
TOP2↓, Inhibition of topoisomerase II a
uPA↓, Decreased MMP2, transactivation of AP-1 [56, 88] NF-κB uPA promoter [88] MMP7
MMP7↓,
TIMP2↑, Increased TIMP2, Cdc42, E cadherin
Cdc42↑,
E-cadherin↑,

3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, DHA exerts anticancer effects through various molecular mechanisms, such as inhibiting proliferation, inducing apoptosis, inhibiting tumor metastasis and angiogenesis, promoting immune function, inducing autophagy and endoplasmic reticulum (ER) stres
Apoptosis↑,
TumMeta↓,
angioG↓,
TumAuto↑,
ER Stress↑,
ROS↑, DHA could increase the level of ROS in cells, thereby exerting a cytotoxic effect in cancer cells
Ca+2↑, activation of Ca2+ and p38 was also observed in DHA-induced apoptosis of PC14 lung cancer cells
p38↑,
HSP70/HSPA5↓, down-regulation of heat-shock protein 70 (HSP70) might participate in the apoptosis of PC3 prostate cancer cells induced by DHA
PPARγ↑, DHA inhibited the growth of colon tumor by inducing apoptosis and increasing the expression of peroxisome proliferator-activated receptor γ (PPARγ)
GLUT1↓, DHA was shown to inhibit the activity of glucose transporter-1 (GLUT1) and glycolytic pathway by inhibiting phosphatidyl-inositol-3-kinase (PI3K)/AKT pathway and downregulating the expression of hypoxia inducible factor-1α (HIF-1α)
Glycolysis↓, Inhibited glycolysis
PI3K↓,
Akt↓,
Hif1a↓,
PKM2↓, DHA could inhibit the expression of PKM2 as well as inhibit lactic acid production and glucose uptake, thereby promoting the apoptosis of esophageal cancer cells
lactateProd↓,
GlucoseCon↓,
EMT↓, regulating the EMT-related genes (Slug, ZEB1, ZEB2 and Twist)
Slug↓, Downregulated Slug, ZEB1, ZEB2 and Twist in mRNA level
Zeb1↓,
ZEB2↓,
Twist↓,
Snail?, downregulated the expression of Snail and PI3K/AKT signaling pathway, thereby inhibiting metastasis
CAFs/TAFs↓, DHA suppressed the activation of cancer-associated fibroblasts (CAFs) and mouse cancer-associated fibroblasts (L-929-CAFs) by inhibiting transforming growth factor-β (TGF-β signaling
TGF-β↓,
p‑STAT3↓, blocking the phosphorylation of STAT3 and polarization of M2 macrophages
M2 MC↓,
uPA↓, DHA could inhibit the growth and migration of breast cancer cells by inhibiting the expression of uPA
HH↓, via inhibiting the hedgehog signaling pathway
AXL↓, DHA acted as an Axl inhibitor in prostate cancer, blocking the expression of Axl through the miR-34a/miR-7/JARID2 pathway, thereby inhibiting the proliferation, migration and invasion of prostate cancer cells.
VEGFR2↓, inhibition of VEGFR2-mediated angiogenesis
JNK↑, JNK pathway activated and Beclin 1 expression upregulated.
Beclin-1↑,
GRP78/BiP↑, Glucose regulatory protein 78 (GRP78, an ER stress-related molecule) was upregulated after DHA treatment.
eff↑, results demonstrated that DHA-induced ER stress required iron
eff↑, DHA was used in combination with PDGFRα inhibitors (sunitinib and sorafenib), it could sensitize ovarian cancer cells to PDGFR inhibitors and achieved effective therapeutic efficacy
eff↑, DHA combined with 2DG (a glycolysis inhibitor) synergistically induced apoptosis through both exogenous and endogenous apoptotic pathways
eff↑, histone deacetylase inhibitors (HDACis) enhanced the anti-tumor effect of DHA by inducing apoptosis.
eff↑, DHA enhanced PDT-induced cell growth inhibition and apoptosis, increased the sensitivity of esophageal cancer cells to PDT by inhibiting the NF-κB/HIF-1α/VEGF pathway
eff↑, DHA was added to magnetic nanoparticles (MNP), and the MNP-DHA has shown an effect in the treatment of intractable breast cancer
IL4↓, downregulated IL-4;
DR5↑, Upregulated DR5 in protein, Increased DR5 promoter activity
Cyt‑c↑, Released cytochrome c from the mitochondria to the cytosol
Fas↑, Upregulated fas, FADD, Bax, cleaved-PARP
FADD↑,
cl‑PARP↑,
cycE↓, Downregulated Bcl-2, Bcl-xL, procaspase-3, Cyclin E, CDK2 and CDK4
CDK2↓,
CDK4↓,
Mcl-1↓, Downregulated Mcl-1
Ki-67↓, Downregulated Ki-67 and Bcl-2
Bcl-2↓,
CDK6↓, Downregulated of Cyclin E, CDK2, CDK4 and CDK6
VEGF↓, Downregulated VEGF, COX-2 and MMP-9
COX2↓,
MMP9↓,

3382- ART/DHA,    Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge?
- Review, Var, NA
AntiCan↑, antimalarial drug, artemisinin that has shown anticancer activities in vitro and in vivo.
toxicity↑, safety of artemisinins in long-term cancer therapy requires further investigation.
Ferroptosis↑, Artemisinins acts against cancer cells via various pathways such as inducing apoptosis (Zhu et al., 2014; Zuo et al., 2014) and ferroptosis via the generation of reactive oxygen species (ROS) (Zhu et al., 2021) and causing cell cycle arrest
ROS↑,
TumCCA↑,
BioAv↝, absolute bioavailability was estimated to be 21.6%. ART has good solubility and is not lipophilic
eff↝, ART would not distribute well to the tissues and might be more effective in treating cancers such as leukemia, hepatocellular carcinoma (HCC), or renal cell carcinoma because the liver and kidney are highly perfused organs.
Half-Life↓, Pharmacokinetic studies showed a relatively short t1/2 of artemisinins. For ART, t1/2 was 0.41 h
Ferritin↓, Figure 3
GPx4↓,
NADPH↓,
GSH↓,
BAX↑,
Cyt‑c↑,
cl‑Casp3↑,
VEGF↓, angiogenesis
IL8↓,
COX2↓,
MMP9↓,
E-cadherin↑,
MMP2↓,
NF-kB↓,
p16↑, cell cycle arrest
CDK4↓,
cycD1↓,
p62↓, autophagy
LC3II↑,
EMT↓, suppressing EMT and CSCs
CSCs↓,
Wnt↓, Depress Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
uPA↓, Inhibit u-PA activity, protein and mRNA expression
TumAuto↑, Emerging evidence suggests that autophagy induction is one of the molecular mechanisms underlying anticancer activity of artemisinins
angioG↓, Inhibition of Angiogenesis
ChemoSen↑, Many studies also reported that the use of artemisinins sensitized cancer cells to conventional chemotherapy and exerted a synergistic effect on apoptosis, inhibition of cell growth, and a reduction of cell viability, leading to a lower IC50 value

1147- ART/DHA,    Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1
- vitro+vivo, Ovarian, HO-8910 - vitro+vivo, Nor, HUVECs
angioG↓, 0.5 approximately 50 micromol/l
TumCG↓,
VEGF↓, remarkably lowered VEGF expression on tumor cells
KDR/FLK-1↓,
*toxicity↓, known low toxicity of ART


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↑,1,   Akt↓,1,   AMPK↑,1,   angioG↓,5,   AntiCan↑,1,   AP-1↓,1,   Apoptosis↑,2,   AXL↓,1,   BAX↑,2,   Bcl-2↓,1,   Beclin-1↑,1,   BioAv↓,1,   BioAv↑,1,   BioAv↝,1,   Ca+2↑,1,   CAFs/TAFs↓,1,   Casp3↓,1,   cl‑Casp3↑,1,   Casp8↑,1,   Casp9↑,1,   CDC25↓,1,   Cdc42↑,1,   CDK1↑,1,   CDK2↓,2,   CDK2↑,1,   CDK4↓,3,   CDK4↑,1,   CDK6↓,1,   CDK6↑,1,   ChemoSen↑,2,   cMyc↓,1,   COX2↓,4,   CSCs↓,1,   CycB↓,1,   cycD1↓,2,   cycE↓,2,   Cyt‑c↑,2,   Diff↑,1,   DNAdam↑,2,   DR5↑,1,   E-cadherin↑,2,   E2Fs↓,1,   eff↓,1,   eff↑,7,   eff↝,1,   EMT↓,2,   ER Stress↓,1,   ER Stress↑,1,   ERK↓,1,   FADD↑,1,   Fas↑,1,   Ferritin↓,2,   Ferroptosis↑,2,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,1,   GPx4↓,1,   GRP78/BiP↑,2,   GSH↓,1,   Half-Life↓,2,   HH↓,1,   Hif1a↓,1,   HSP70/HSPA5↓,1,   IL1β↓,1,   IL4↓,1,   IL8↓,2,   JNK↓,1,   JNK↑,1,   KDR/FLK-1↓,1,   Ki-67↓,1,   lactateProd↓,1,   LC3II↑,1,   lipid-P↑,1,   M2 MC↓,1,   Mcl-1↓,1,   MDM2↓,1,   MMP2↓,2,   MMP7↓,1,   MMP9↓,3,   mTOR↑,1,   NADPH↓,1,   NF-kB↓,2,   p16↑,1,   P21↑,1,   p27↑,1,   p38↑,1,   p62↓,1,   cl‑PARP↑,1,   PCNA↓,1,   PI3K↓,1,   PKCδ↓,1,   PKM2↓,1,   PPARγ↑,1,   RadioS↑,1,   Raf↓,1,   ROS↑,4,   selectivity↑,1,   SIRT1↑,1,   Slug↓,1,   Snail?,1,   p‑STAT3↓,1,   survivin↓,2,   Tf↑,1,   TGF-β↓,1,   TIMP2↑,1,   TOP2↓,1,   toxicity↑,1,   TumAuto↑,3,   TumCCA↑,3,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,3,   TumMeta↓,2,   TumVol↓,1,   Twist↓,1,   uPA↓,3,   VEGF↓,4,   VEGFR2↓,1,   Wnt↓,1,   Zeb1↓,1,   ZEB2↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 123

Results for Effect on Normal Cells:
toxicity↓,1,  
Total Targets: 1

Scientific Paper Hit Count for: angioG, angiogenesis
5 Artemisinin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:34  Target#:447  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page