condition found tbRes List
ART/DHA, Artemisinin: Click to Expand ⟱
Features:
Artemisinin a compound in a Chinese herb that may inhibit tumor growth and metastasis Artemisinin (antimalarial drugs)
Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044

The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer.
combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.

Summary:
- Pro-oxidant, mechanism related with iron (hence avoid supplements containing iron? Or perhaps take with iron?)
-ROS seems to affect both cancer and normal cells
- Delivery of artemisinin in conjugate form with transferrin or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness.
- Potential direct inhibitor of STAT3
- Artemisinin synergized with the glycolysis inhibitor 2DG (2-deoxy- D -glucose)
ART Combined Therapy: Allicin, Resveratrol, Curcumin, VitC (but not orally at same time), Butyrate , 2-DG, Aminolevulinic AcidG
-possible problems with liver toxicity??

-Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death.

Pathways:
- Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades.
- Downregulate HIF-1α
- By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production.
- Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply)

-Artemisinin has a half-life of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour.
BioAv 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs)
Pathways:
- induce ROS production, iron dependent (affect both cancer and normal cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Both Lowers (and raises) AntiOxidant defense in Cancer Cells: NRF2↓(contary), SOD↓, GSH↓ Catalase↓ GPx↓
- Small evidence of Raising AntiOxidant defense in Normal Cells: ROS↓(contary), NRF2↑, SOD↑(contary), GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- some small indication of inhibiting Cancer Stem Cells : CSC↓, Hh↓, β-catenin↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes),

- Selectivity: Cancer Cells vs Normal Cells


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
2577- ART/DHA,    Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives
- Review, Var, NA
eff↑, Artemisinin-transferrin conjugate has been shown to be more potent than artemisinin in killing cancer cells
TumCCA↑, ART has been shown to act on the G 1 phase , and DHA and ARS on the G2/M phase arrest
BioAv↑, Artemetherâ's solubility has been increased by 3- to 15-fold using pegylated lysine-based copolymeric den- dritic micelles (5-25 nm, loading 0.5-1 g/g) with prolonged release of up to 1-2 days in vitro
eff↑, ART crystals have been encapsulated with chitosan, gelatin, and alginate (766 nm) with a 90% encapsulation efficiency and improved hydrophilicity
ChemoSen↑, Combining artemisinins with chemotherapy in nano drug delivery systems can improve efficacy through higher com- bination index

3396- ART/DHA,    Progress on the study of the anticancer effects of artesunate
- Review, Var, NA
TumCP↓, reported inhibitory effects on cancer cell proliferation, invasion and migration.
TumCI↓,
TumCMig↓,
Apoptosis↑, ART has been reported to induce apoptosis, differentiation and autophagy in colorectal cancer cells by impairing angiogenesis
Diff↑,
TumAuto↑,
angioG↓,
TumCCA↑, inducing cell cycle arrest (11), upregulating ROS levels, regulating signal transduction [for example, activating the AMPK-mTOR-Unc-51-like autophagy activating kinase (ULK1) pathway in human bladder cancer cells]
ROS↑,
AMPK↑,
mTOR↑,
ChemoSen↑, ART has been shown to restore the sensitivity of a number of cancer types to chemotherapeutic drugs by modulating various signaling pathways
Tf↑, ART could upregulate the mRNA levels of transferrin receptor (a positive regulator of ferroptosis), thus inducing apoptosis and ferroptosis in A549 non-small cell lung cancer (NSCLC) cells.
Ferroptosis↑,
Ferritin↓, ferritin degradation, lipid peroxidation and ferroptosis
lipid-P↑,
CDK1↑, Cyclin-dependent kinase 1, 2, 4 and 6
CDK2↑,
CDK4↑,
CDK6↑,
SIRT1↑, Sirt1 levels
COX2↓,
IL1β↓, IL-1? ?
survivin↓, ART can selectively downregulate the expression of survivin and induce the DNA damage response in glial cells to increase cell apoptosis and cell cycle arrest, resulting in increased sensitivity to radiotherapy
DNAdam↑,
RadioS↑,

3391- ART/DHA,    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug
- Review, Var, NA
TumCP↓, inhibiting cancer proliferation, metastasis, and angiogenesis.
TumMeta↓,
angioG↓,
TumVol↓, reduces tumor volume and progression
BioAv↓, artemisinin has low solubility in water or oil, poor bioavailability, and a short half-life in vivo (~2.5 h)
Half-Life↓,
BioAv↑, semisynthetic derivatives of artemisinin such as artesunate, arteeter, artemether, and artemisone have been effectively used as antimalarials with good clinical efficacy and tolerability
eff↑, preloading of cancer cells with iron or iron-saturated holotransferrin (diferric transferrin) triggers artemisinin cytotoxicity
eff↓, Similarly, treatment with desferroxamine (DFO), an iron chelator, renders compounds inactive
ROS↑, ROS generation may contribute with the selective action of artemisinin on cancer cells.
selectivity↑, Tumor cells have enhanced vulnerability to ROS damage as they exhibit lower expression of antioxidant enzymes such as superoxide dismutase, catalase, and gluthatione peroxidase compared to that of normal cells
TumCCA↑, G2/M, decreased survivin
survivin↓,
BAX↑, Increased Bax, activation of caspase 3,8,9 Decreased Bc12, Cdc25B, cyclin B1, NF-κB
Casp3↓,
Casp8↑,
Casp9↑,
CDC25↓,
CycB↓,
NF-kB↓,
cycD1↓, decreased cyclin D, E, CDK2-4, E2F1 Increased Cip 1/p21, Kip 1/p27
cycE↓,
E2Fs↓,
P21↑,
p27↑,
ADP:ATP↑, Increased poly ADP-ribose polymerase Decreased MDM2
MDM2↓,
VEGF↓, Decreased VEGF
IL8↓, Decreased NF-κB DNA binding [74, 76] IL-8, COX2, MMP9
COX2↓,
MMP9↓,
ER Stress↓, ER stress, degradation of c-MYC
cMyc↓,
GRP78/BiP↑, Increased GRP78
DNAdam↑, DNA damage
AP-1↓, Decreased NF-κB, AP-1, Decreased activation of MMP2, MMP9, Decreased PKC α/Raf/ERK and JNK
MMP2↓,
PKCδ↓,
Raf↓,
ERK↓,
JNK↓,
PCNA↓, G2, decreased PCNA, cyclin B1, D1, E1 [82] CDK2-4, E2F1, DNA-PK, DNA-topo1, JNK VEGF
CDK2↓,
CDK4↓,
TOP2↓, Inhibition of topoisomerase II a
uPA↓, Decreased MMP2, transactivation of AP-1 [56, 88] NF-κB uPA promoter [88] MMP7
MMP7↓,
TIMP2↑, Increased TIMP2, Cdc42, E cadherin
Cdc42↑,
E-cadherin↑,

2321- ART/DHA,    Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706
Pyro↑, DHA treatment to ESCC, we found that some dying cells exhibited the characteristic morphology of pyroptosis, such as blowing large bubbles from the cell membrane,
PKM2↓, accompanied by downregulation of pyruvate kinase isoform M2 (PKM2),
Casp8↑, activation of caspase-8/3, and production of GSDME-NT
Casp3↑,
Warburg↓, previous studies, we demonstrated that DHA has anti-esophageal cancer effects by blocking the cell cycle in G0/G1 phase, inducing apoptosis, regulating the NF-κB/HIF-1α/VEGF pathway ... and downregulating the expression of PKM2 to inhibit the Warburg
TumCCA↑,
Apoptosis↑,

3382- ART/DHA,    Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge?
- Review, Var, NA
AntiCan↑, antimalarial drug, artemisinin that has shown anticancer activities in vitro and in vivo.
toxicity↑, safety of artemisinins in long-term cancer therapy requires further investigation.
Ferroptosis↑, Artemisinins acts against cancer cells via various pathways such as inducing apoptosis (Zhu et al., 2014; Zuo et al., 2014) and ferroptosis via the generation of reactive oxygen species (ROS) (Zhu et al., 2021) and causing cell cycle arrest
ROS↑,
TumCCA↑,
BioAv↝, absolute bioavailability was estimated to be 21.6%. ART has good solubility and is not lipophilic
eff↝, ART would not distribute well to the tissues and might be more effective in treating cancers such as leukemia, hepatocellular carcinoma (HCC), or renal cell carcinoma because the liver and kidney are highly perfused organs.
Half-Life↓, Pharmacokinetic studies showed a relatively short t1/2 of artemisinins. For ART, t1/2 was 0.41 h
Ferritin↓, Figure 3
GPx4↓,
NADPH↓,
GSH↓,
BAX↑,
Cyt‑c↑,
cl‑Casp3↑,
VEGF↓, angiogenesis
IL8↓,
COX2↓,
MMP9↓,
E-cadherin↑,
MMP2↓,
NF-kB↓,
p16↑, cell cycle arrest
CDK4↓,
cycD1↓,
p62↓, autophagy
LC3II↑,
EMT↓, suppressing EMT and CSCs
CSCs↓,
Wnt↓, Depress Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
uPA↓, Inhibit u-PA activity, protein and mRNA expression
TumAuto↑, Emerging evidence suggests that autophagy induction is one of the molecular mechanisms underlying anticancer activity of artemisinins
angioG↓, Inhibition of Angiogenesis
ChemoSen↑, Many studies also reported that the use of artemisinins sensitized cancer cells to conventional chemotherapy and exerted a synergistic effect on apoptosis, inhibition of cell growth, and a reduction of cell viability, leading to a lower IC50 value

570- ART/DHA,    Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling
- vitro+vivo, NSCLC, A549 - vitro+vivo, NSCLC, H1299
TumCCA↑, arresting cell cycle in G1 phase.
CSCs↓,
TumCI↓,
TumCMig↓,
TumCG↓,
Wnt/(β-catenin)↓, main pathway
Nanog↓,
SOX2↓,
OCT4↓, oct3/4
N-cadherin↓,
Vim↓,
E-cadherin↑,

569- ART/DHA,    Dihydroartemisinin exhibits anti-glioma stem cell activity through inhibiting p-AKT and activating caspase-3
- in-vitro, GBM, NA
TumCP↓,
Apoptosis↑,
TumCCA↑, cell cycle arrest in the G1 phase
Casp3↑,
p‑Akt↓,

564- ART/DHA,  Cisplatin,    Dihydroartemisinin as a Putative STAT3 Inhibitor, Suppresses the Growth of Head and Neck Squamous Cell Carcinoma by Targeting Jak2/STAT3 Signaling
- in-vitro, NA, HN30
JAK2↓,
STAT3↓,
MMP2↓,
MMP9↓,
Mcl-1↓,
Bcl-xL↓,
cycD1↓,
VEGF↓,
TumCCA↑, G1 cell cycle arrest in HNSCC
ChemoSen↑, DHA also synergized with cisplatin in tumor inhibition in HNSCC cells

556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓,
IL1↓, IL-1β
TNF-α↓,
TGF-β↓, TGF-β1
NF-kB↓,
MIP2↓,
PGE2↓,
NO↓,
Hif1a↓,
KDR/FLK-1↓,
VEGF↓,
MMP2↓,
TIMP2↑,
ITGB1↑,
NCAM↑,
p‑ATM↑,
p‑ATR↑,
p‑CHK1↑,
p‑Chk2↑,
Wnt/(β-catenin)↓,
PI3K↓,
Akt↓,
ERK↓, ERK1/2
cMyc↓,
mTOR↓,
survivin↓,
cMET↓,
EGFR↓,
cycD1↓,
cycE1↓,
CDK4/6↓,
p16↑,
p27↑,
Apoptosis↑,
TumAuto↑,
Ferroptosis↑,
oncosis↑,
TumCCA↑, G0/G1 into M phase, G0/G1 into S phase, G1 and G2/M
ROS↑, ovarian cancer cell line model, artesunate induced oxidative stress, DNA double-strand breaks (DSBs) and downregulation of RAD51 foci
DNAdam↑,
RAD51↓,
HR↓,

985- ART/DHA,    Artemisinin suppresses aerobic glycolysis in thyroid cancer cells by downregulating HIF-1a, which is increased by the XIST/miR-93/HIF-1a pathway
- in-vitro, Thyroid, TPC-1 - Human, NA, NA
XIST↓, HIF-1a is highly expressed in TC tissues and is positively correlated with the level of XIST in the serum of patients with TC.
Hif1a↓,
Glycolysis↓,
TumCCA↑, inhibited the cell cycle, and G1 phase cells increased by 17%
TumMeta↓, 51%


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↑,1,   Akt↓,1,   p‑Akt↓,1,   AMPK↑,1,   angioG↓,3,   AntiCan↑,1,   AP-1↓,1,   Apoptosis↑,4,   p‑ATM↑,1,   p‑ATR↑,1,   BAX↑,2,   Bcl-xL↓,1,   BioAv↓,1,   BioAv↑,2,   BioAv↝,1,   Casp3↓,1,   Casp3↑,2,   cl‑Casp3↑,1,   Casp8↑,2,   Casp9↑,1,   CDC25↓,1,   Cdc42↑,1,   CDK1↑,1,   CDK2↓,1,   CDK2↑,1,   CDK4↓,2,   CDK4↑,1,   CDK4/6↓,1,   CDK6↑,1,   ChemoSen↑,4,   p‑CHK1↑,1,   p‑Chk2↑,1,   cMET↓,1,   cMyc↓,2,   COX2↓,3,   CSCs↓,2,   CycB↓,1,   cycD1↓,4,   cycE↓,1,   cycE1↓,1,   Cyt‑c↑,1,   Diff↑,1,   DNAdam↑,3,   E-cadherin↑,3,   E2Fs↓,1,   eff↓,1,   eff↑,3,   eff↝,1,   EGFR↓,1,   EMT↓,1,   ER Stress↓,1,   ERK↓,2,   Ferritin↓,2,   Ferroptosis↑,3,   Glycolysis↓,1,   GPx4↓,1,   GRP78/BiP↑,1,   GSH↓,1,   Half-Life↓,2,   Hif1a↓,2,   HR↓,1,   IL1↓,1,   IL1β↓,1,   IL6↓,1,   IL8↓,2,   ITGB1↑,1,   JAK2↓,1,   JNK↓,1,   KDR/FLK-1↓,1,   LC3II↑,1,   lipid-P↑,1,   Mcl-1↓,1,   MDM2↓,1,   MIP2↓,1,   MMP2↓,4,   MMP7↓,1,   MMP9↓,3,   mTOR↓,1,   mTOR↑,1,   N-cadherin↓,1,   NADPH↓,1,   Nanog↓,1,   NCAM↑,1,   NF-kB↓,3,   NO↓,1,   OCT4↓,1,   oncosis↑,1,   p16↑,2,   P21↑,1,   p27↑,2,   p62↓,1,   PCNA↓,1,   PGE2↓,1,   PI3K↓,1,   PKCδ↓,1,   PKM2↓,1,   Pyro↑,1,   RAD51↓,1,   RadioS↑,1,   Raf↓,1,   ROS↑,4,   selectivity↑,1,   SIRT1↑,1,   SOX2↓,1,   STAT3↓,1,   survivin↓,3,   Tf↑,1,   TGF-β↓,1,   TIMP2↑,2,   TNF-α↓,1,   TOP2↓,1,   toxicity↑,1,   TumAuto↑,3,   TumCCA↑,10,   TumCG↓,1,   TumCI↓,2,   TumCMig↓,2,   TumCP↓,3,   TumMeta↓,2,   TumVol↓,1,   uPA↓,2,   VEGF↓,4,   Vim↓,1,   Warburg↓,1,   Wnt↓,1,   Wnt/(β-catenin)↓,2,   XIST↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 128

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
10 Artemisinin
1 Cisplatin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:34  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page