condition found
Features: |
Artemisinin a compound in a Chinese herb that may inhibit tumor growth and metastasis
Artemisinin (antimalarial drugs) Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044 The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer. combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells. Summary: - Pro-oxidant, mechanism related with iron (hence avoid supplements containing iron? Or perhaps take with iron?) -ROS seems to affect both cancer and normal cells - Delivery of artemisinin in conjugate form with transferrin or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness. - Potential direct inhibitor of STAT3 - Artemisinin synergized with the glycolysis inhibitor 2DG (2-deoxy- D -glucose) ART Combined Therapy: Allicin, Resveratrol, Curcumin, VitC (but not orally at same time), Butyrate , 2-DG, Aminolevulinic AcidG -possible problems with liver toxicity?? -Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death. Pathways: - Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades. - Downregulate HIF-1α - By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production. - Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply) -Artemisinin has a half-life of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour. BioAv 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs) Pathways: - induce ROS production, iron dependent (affect both cancer and normal cells) - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - Both Lowers (and raises) AntiOxidant defense in Cancer Cells: NRF2↓(contary), SOD↓, GSH↓ Catalase↓ GPx↓ - Small evidence of Raising AntiOxidant defense in Normal Cells: ROS↓(contary), NRF2↑, SOD↑(contary), GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, TGF-β↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓, - some small indication of inhibiting Cancer Stem Cells : CSC↓, Hh↓, β-catenin↓, sox2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes), - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product) -Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells -HIF1A induces the expression of vascular endothelial growth factor (VEGF) -High HIF-1α expression is associated with Poor prognosis -Low HIF-1α expression is associated with Better prognosis -Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism. -Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis Key mediators of aerobic glycolysis regulated by HIF-1α. -GLUT-1 → regulation of the flux of glucose into cells. -HK2 → catalysis of the first step of glucose metabolism. -PKM2 → regulation of rate-limiting step of glycolysis. -Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis. -LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate; HIF-1α Inhibitors: -Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate). -Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions. -EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity. -Emodin: reduce HIF-1α expression. (under hypoxia). -Apigenin: inhibit HIF-1α accumulation. |
2324- | ART/DHA,  |   | Research Progress of Warburg Effect in Hepatocellular Carcinoma |
- | Review, | Var, | NA |
3383- | ART/DHA,  |   | Dihydroartemisinin: A Potential Natural Anticancer Drug |
- | Review, | Var, | NA |
556- | ART/DHA,  |   | Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing |
- | Review, | NA, | NA |
985- | ART/DHA,  |   | Artemisinin suppresses aerobic glycolysis in thyroid cancer cells by downregulating HIF-1a, which is increased by the XIST/miR-93/HIF-1a pathway |
- | in-vitro, | Thyroid, | TPC-1 | - | Human, | NA, | NA |
957- | ART/DHA,  |   | Artemisinin inhibits the development of esophageal cancer by targeting HIF-1α to reduce glycolysis levels |
- | in-vitro, | ESCC, | KYSE150 | - | in-vitro, | ESCC, | KYSE170 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:34 Target#:143 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid