condition found tbRes List
ART/DHA, Artemisinin: Click to Expand ⟱
Features:
Artemisinin a compound in a Chinese herb that may inhibit tumor growth and metastasis Artemisinin (antimalarial drugs)
Artesunic acid (Artesunate) , Dihydroartemisinin (DHA), artesunate, arteether, and artemether, SM735, SM905, SM933, SM934, and SM1044

The induction of OS in tumor cells via the production of ROS is the key mechanism of ART against cancer.
combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.

Summary:
- Pro-oxidant, mechanism related with iron (hence avoid supplements containing iron? Or perhaps take with iron?)
-ROS seems to affect both cancer and normal cells
- Delivery of artemisinin in conjugate form with transferrin or holotransferrin (serum iron transport proteins) have been shown to greatly improve its effectiveness.
- Potential direct inhibitor of STAT3
- Artemisinin synergized with the glycolysis inhibitor 2DG (2-deoxy- D -glucose)
ART Combined Therapy: Allicin, Resveratrol, Curcumin, VitC (but not orally at same time), Butyrate , 2-DG, Aminolevulinic AcidG
-possible problems with liver toxicity??

-Artesunate (ART), an artemisinin compound, is known for lysosomal degradation of ferritin, inducing oxidative stress and promoting cancer cell death.

Pathways:
- Increasing reactive oxygen species (ROS) production. This oxidative stress can cause the loss of mitochondrial membrane potential, leading to cytochrome c release and subsequent activation of caspase cascades.
- Downregulate HIF-1α
- By impairing glycolysis, artemisinin might force cells to rely on oxidative phosphorylation (OXPHOS) for energy production.
- Inhibit GLUT1 (glucose uptake), HK2, PKM2 (slow the glycolytic flux, thereby reducing the energy supply)

-Artemisinin has a half-life of about 3-4 hours, Artesunate 40 minutes and Artemether 12 hours. Peak plasma levels occur in 1-2 hour.
BioAv 21%, poor-good solubility. Artesunate (ART), a water soluble derivative of artemisinin. concentrations higher in blood, colon, liver, kidney (highly perfused organs)
Pathways:
- induce ROS production, iron dependent (affect both cancer and normal cells)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- Both Lowers (and raises) AntiOxidant defense in Cancer Cells: NRF2↓(contary), SOD↓, GSH↓ Catalase↓ GPx↓
- Small evidence of Raising AntiOxidant defense in Normal Cells: ROS↓(contary), NRF2↑, SOD↑(contary), GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, Integrins↓,
- some small indication of inhibiting Cancer Stem Cells : CSC↓, Hh↓, β-catenin↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes),

- Selectivity: Cancer Cells vs Normal Cells


TumCG, Tumor cell growth: Click to Expand ⟱
Source:
Type:
Normal cells grow and divide in a regulated manner through the cell cycle, which consists of phases (G1, S, G2, and M).
Cancer cells often bypass these regulatory mechanisms, leading to uncontrolled proliferation. This can result from mutations in genes that control the cell cycle, such as oncogenes (which promote cell division) and tumor suppressor genes (which inhibit cell division).


Scientific Papers found: Click to Expand⟱
2576- ART/DHA,  AL,    The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo
- in-vitro, OS, MG63 - in-vivo, NA, NA
eff↑, Our results indicated that artesunate and allicin in combination exert synergistic effects on osteosarcoma cell proliferation and apoptosis.
tumCV↓,
Casp3↑, apoptotic rate was significantly increased through caspase-3/9 expression and activity enhancement
Casp9↑,
Apoptosis↑,
TumCG↓, Combination suppresses in vivo tumor growth

2582- ART/DHA,  5-ALA,    Mechanistic Investigation of the Specific Anticancer Property of Artemisinin and Its Combination with Aminolevulinic Acid for Enhanced Anticolorectal Cancer Activity
- in-vivo, CRC, HCT116 - in-vitro, CRC, HCT116
eff↑, Guided by this mechanism, the specific cytotoxicity of ART toward CRC cells can be dramatically enhanced with the addition of aminolevulinic acid (ALA), a clinically used heme synthesis precursor, to increase heme levels
ROS↑, We found that artesunate significantly increased ROS levels (Figure 4f) in HCT116 cells
selectivity↑, In contrast, heme levels in normal cells and tissues are strictly controlled and maintained at lower levels, minimizing ART’s activation, which could possibly explain the specificity and low toxicity of ART.
TumCG↓, Strikingly, the combination of artesunate and ALA showed significant tumor growth delay in comparison to both the control and the artesunate or ALA single treatment groups
toxicity↓, Since both artesunate and ALA are clinically used and well-tolerated, (52) this combination has the potential to be safely applied to subsequent clinical testing

570- ART/DHA,    Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling
- vitro+vivo, NSCLC, A549 - vitro+vivo, NSCLC, H1299
TumCCA↑, arresting cell cycle in G1 phase.
CSCs↓,
TumCI↓,
TumCMig↓,
TumCG↓,
Wnt/(β-catenin)↓, main pathway
Nanog↓,
SOX2↓,
OCT4↓, oct3/4
N-cadherin↓,
Vim↓,
E-cadherin↑,

561- ART/DHA,    Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4+ CD25+ FoxP3+ T reg cells in vivo
- in-vivo, NA, NA
TumCG↓,
CD4+↓,
CD25+↓,
FoxP3+↓,
IL4↑,

1147- ART/DHA,    Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1
- vitro+vivo, Ovarian, HO-8910 - vitro+vivo, Nor, HUVECs
angioG↓, 0.5 approximately 50 micromol/l
TumCG↓,
VEGF↓, remarkably lowered VEGF expression on tumor cells
KDR/FLK-1↓,
*toxicity↓, known low toxicity of ART


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   Apoptosis↑,1,   Casp3↑,1,   Casp9↑,1,   CD25+↓,1,   CD4+↓,1,   CSCs↓,1,   E-cadherin↑,1,   eff↑,2,   FoxP3+↓,1,   IL4↑,1,   KDR/FLK-1↓,1,   N-cadherin↓,1,   Nanog↓,1,   OCT4↓,1,   ROS↑,1,   selectivity↑,1,   SOX2↓,1,   toxicity↓,1,   TumCCA↑,1,   TumCG↓,5,   TumCI↓,1,   TumCMig↓,1,   tumCV↓,1,   VEGF↓,1,   Vim↓,1,   Wnt/(β-catenin)↓,1,  
Total Targets: 27

Results for Effect on Normal Cells:
toxicity↓,1,  
Total Targets: 1

Scientific Paper Hit Count for: TumCG, Tumor cell growth
5 Artemisinin
1 Allicin (mainly Garlic)
1 5-Aminolevulinic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:34  Target#:323  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page