condition found tbRes List
BetA, Betulinic acid: Click to Expand ⟱
Features:
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.
-Betulinic acid is a naturally occurring pentacyclic triterpenoid
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg
-half-life reports vary 3-5 hrs?.
BioAv -hydrophobic molecule with relatively poor water solubility.

Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells


Cyt‑c, cyt-c Release into Cytosol: Click to Expand ⟱
Source:
Type:
Cytochrome c
** The term "release of cytochrome c" ** an increase in level for the cytosol.
Small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis.

The term "release of cytochrome c" refers to a critical step in the process of programmed cell death, also known as apoptosis.
In its new location—the cytosol—cytochrome c participates in the apoptotic signaling pathway by helping to form the apoptosome, which activates caspases that execute cell death.
Cytochrome c is a small protein normally located in the mitochondrial intermembrane space. Its primary role in healthy cells is to participate in the electron transport chain, a process that helps produce energy (ATP) through oxidative phosphorylation.
Mitochondrial outer membrane permeability leads to the release of cytochrome c from the mitochondria into the cytosol.
The release of cytochrome c is a pivotal event in apoptosis where cytochrome c moves from the mitochondria to the cytosol, initiating a chain reaction that leads to programmed cell death.

On the one hand, cytochrome c can promote cancer cell survival and proliferation by regulating the activity of various signaling pathways, such as the PI3K/AKT pathway. This can lead to increased cell growth and resistance to apoptosis, which are hallmarks of cancer.
On the other hand, cytochrome c can also induce apoptosis in cancer cells by interacting with other proteins, such as Apaf-1 and caspase-9. This can lead to the activation of the intrinsic apoptotic pathway, which can result in the death of cancer cells.
Overexpressed in Breast, Lung, Colon, and Prostrate.
Underexpressed in Ovarian, and Pancreatic.


Scientific Papers found: Click to Expand⟱
2743- BetA,    Betulinic acid and the pharmacological effects of tumor suppression
- Review, Var, NA
ROS↓, BA improves the level of reactive oxygen species (ROS) production and alters the mitochondrial membrane potential gradient, followed by the release of cytochrome c (Cyt c), which causes the mitochondrial-mediated apoptosis of tumor cells via a caspas
MMP↓,
Cyt‑c↑,
Apoptosis↑,
TumCCA↑, BA can inhibit cancer cell growth and proliferation via cell cycle arrest
Sp1/3/4↓, BA, can inhibit the protein expression of Sp1, Sp2 and Sp4 through the microRNA (miR)-27a-ZBTB10-Sp1 axis
STAT3↓, BA can downregulate the activation of STAT3 through the upregulation of Src homology 2 domain-containing phosphatase 1 (SHP-1)
NF-kB↓, NF-κB can be inhibited by reducing the activation of inhibitor of NF-κB (IκBα) kinase (IKKβ) and phosphorylation of IκBα with BA
EMT↓, nvasion and metastasis of malignancies is prevented via epithelial-mesenchymal transition (EMT) and inhibition of topoisomerase I
TOP1↓,
MAPK↑, BA leads to the activation, via phosphorylation, of pro-apoptotic MAPK proteins, P38 and SAP/JNK, the formation of ROS and the upregulation of caspase
p38↑,
JNK↑,
Casp↑,
Bcl-2↓, BA downregulates Bcl-2 and upregulates the Bax gene in HeLa cell lines
BAX↑,
VEGF↓, BA can decrease the expression of VEGF via Sp proteins, thus having an antiangiogenic role
LAMs↓, BA suppresses the expression of lamin B1 in pancreatic cancer cells

2747- BetA,    Betulinic acid, a natural compound with potent anticancer effects
- Review, Var, NA
selectivity↑, potently effective against a wide variety of cancer cells, also those derived from therapy-resistant and refractory tumors, whereas it has been found to be relatively nontoxic for healthy cells
Cyt‑c↑, induces Bax/Bak-independent cytochrome-c release.
*toxicity↓, In general, BetA is concluded to be less toxic to cells from healthy tissues.
TOP1↓, topoisomerase I/II
NF-kB↓, transcription factor NF-kB
ROS↑, Consistently, in glioma cells BetA-induced ROS generation
RadioS↑, Treatment with BetA in combination with irradiation resulted in additive growth inhibition of melanoma cells.
ChemoSen↑, BetA cooperated with anticancer drugs, doxorubicin and etoposide, to induce apoptosis and to inhibit clonogenic survival in SHEP neuroblastoma cells

2748- BetA,    Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy
- Review, Var, NA
Bcl-2↓, Cell death stimuli activate prodeath BCL-2 family proteins that in turn permeabilize mitochondrial outer membrane, thereby resulting in the release of Cyt C
MMP↓,
Cyt‑c↑,
Casp↑, Smac (second mitochondria-derived activator of caspase)/DIABLO (direct inhibitor of apoptosis [IAP] binding protein with low pI), and AIF (apoptosis-inducing factor) into the cytoplasm (27
Diablo↑,
AIF↑,
angioG↓, BetA's inhibition of growth-factor-induced angiogenesis seems at least partially owing to modulation of mitochondrial function in endothelial cells
BioAv↓, Current methods of conventional drug delivery using oral liquids or tablets are generally inefficient, with poor biodis- tribution, low solubility, long-term toxicity, and limited drug efficacy due to partial biodegradation, swelling, and ero- sion
NF-kB↓, BetA treatment inhibits the activation of NF-kB

2752- BetA,    Betulinic acid: a natural product with anticancer activity
- Review, Var, NA
selectivity↑, nontransformed cells of different origin, e.g., fibroblasts, melanocytes, neuronal cells and peripheral blood lymphocytes, have been reported to be much more resistant to the cytotoxic effect of BA than cancer cells
ChemoSen↑, BA was found to cooperate with various chemotherapeutic drugs, including doxorubicin, etoposide, cisplatin, taxol, and actinomycin D, to induce apoptosis and to inhibit clonogenic survival of tumor cells
RadioS↑, These reports suggest that using BetA as sensitizer in chemotherapy-, radiotherapy-, or TRAIL-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy.
MMP↓, BA directly induces loss of mitochondrial membrane potenti
cl‑Casp3↑, BA, induced cleavage of both caspases-8 and -3 in cytosolic extracts.
Cyt‑c↑, cytochrome c, released from mitochondria undergoing BA-mediated permeability transition, activated caspase-3 but not caspase-8 in a cell-free system.
ROS↑, Cleavage of caspases-3 and -8 was preceded by disturbance of mitochondrial membrane potential and by generation of reactive oxygen species (ROS).
NF-kB↑, BA is a potent activator of NF-kB in a variety of tumor cell lines.
TOP1↓, BA blocks the catalytic activity of topoisomerase I by abrogating the inter- action of the enzyme and the DNA substrate

2760- BetA,    A Review on Preparation of Betulinic Acid and Its Biological Activities
- Review, Var, NA - Review, Stroke, NA
AntiTum↑, BA is considered a future promising antitumor compound
Cyt‑c↑, BA stimulated mitochondria to release cytochrome c and Smac and cause further apoptosis reactions
Smad1↑,
Sepsis↓, Administration of 10 and 30 mg/kg of BA significantly improved survival against sepsis and attenuated lung injury.
NF-kB↓, BA inhibited nuclear factor-kappa B (NF-κB) expression in the lung and decreased levels of cytokine, intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-9 (MMP-9)
ICAM-1↓,
MCP1↓,
MMP9↓,
COX2↓, In hPBMCs, BA suppressed cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PEG2) production by inhibiting extracellular regulated kinase (ERK) and Akt phosphorylation and thereby modulated the NF-κB signaling pathway
PGE2↓,
ERK↓,
p‑Akt↓,
*ROS↓, BA significantly decreased the mortality of mice against endotoxin shock and inhibited the production of PEG2 in two of the most susceptible organs, lungs and livers [80]. Moreover, BA reduced reactive oxygen species (ROS) formation
*LDH↓, and the release of lactate dehydrogenase
*hepatoP↑, hepatoprotective effect of BA from Tecomella undulata.
*SOD↑, Pretreatment of BA prevented the depletion of hepatic antioxidants superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) and ascorbic acid (AA) and decreased the CCl4-induced LPO level
*Catalase↑,
*GSH↑,
*AST↓, A also attenuated the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) plasma level,
*ALAT↓,
*RenoP↑, BA also exhibits renal-protective effects. Renal fibrosis is an end-stage renal disease symptom that develops from chronic kidney disease (CKD).
*ROS↓, BA protected against this ischemia-reperfusion injury in a mice model by enhancing blood flow and reducing oxidative stress and nitrosative stress
*α-SMA↓, Moreover, BA reduced the expression of α-smooth muscle actin (α-SMA) and collagen-I

2717- BetA,    Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma
- in-vitro, Melanoma, U266 - in-vivo, Melanoma, NA - in-vitro, Melanoma, RPMI-8226
Apoptosis↑, BA mediated cytotoxicity in MM cells through apoptosis, S-phase arrest, mitochondrial membrane potential (MMP) collapse, and overwhelming reactive oxygen species (ROS) accumulation.
TumCCA↑, S-Phase Arrest in U266 Cells
MMP↓,
ROS↑, exhibited concentration-dependent increases in intracellular ROS
eff↓, ROS scavenger N-acetyl cysteine (NAC) effectively abated elevated ROS, the BA-induced apoptosis was partially reversed
NF-kB↓, BA resulted in marked inhibition of the aberrantly activated NF-κB pathway in MM
Cyt‑c↑, BA mediated the release of cyt c and activated cleaved caspase-3, caspase-8, and caspase-9 and cleaved PARP1
Casp3↑,
Casp8↑,
Casp9↑,
cl‑PARP1↑,
MDA↑, here is a concentration-dependent increase in MDA contents and reduction in SOD activities, especially for the high concentration group.
SOD↓,
SOD2↓, expression of genes SOD2, FHC, GCLM, and GSTM was all decreased following treatment with BA (40 μM)
GCLM↓,
GSTA1↓,
FTH1↓, FHC
GSTs↓, GSTM
TumVol↓, BA Inhibits the Growth of MM Xenograft Tumors In Vivo. BA-treated group were significantly reduced (inhibition ratio of approximately 72.1%).

2718- BetA,    The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis
- in-vitro, AML, U937
TumCCA↑, BA exerted a significant cytotoxic effect on U937 cells through blocking cell cycle arrest at the G2/M phase and inducing apoptosis, and that the intracellular reactive oxygen species (ROS) levels increased after treatment with BA.
Apoptosis↑,
i-ROS↑,
cycA1↓, down-regulation of cyclin A and cyclin B1, and up-regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 revealed the G2/M phase arrest mechanism of BA.
CycB↓,
P21↑,
Cyt‑c↑, BA induced the cytosolic release of cytochrome c by reducing the mitochondrial membrane potential with an increasing Bax/Bcl-2 expression ratio.
MMP↓,
Bax:Bcl2↑,
Casp9↑, BA also increased the activity of caspase-9 and -3, and subsequent degradation of the poly (ADP-ribose) polymerase.
Casp3↑,
PARP↓,
eff↓, However, quenching of ROS by N-acetyl-cysteine, an ROS scavenger, markedly abolished BA-induced G2/M arrest and apoptosis, indicating that the generation of ROS plays a key role in inhibiting the proliferation of U937 cells by BA treatment.
*antiOx↑, Accumulated evidence demonstrates that BA possesses various biological activities, including antioxidant, anti-inflammatory, hepatoprotective, and anti-tumor effects
*Inflam↓,
*hepatoP↑,
selectivity↑, BA are complex and depends on the type of cancer cells, without causing toxicity toward normal cells
NF-kB↓, Shen et al. (2019) recently reported that the suppression of the nuclear factor-kappa B pathway increased downstream oxidant effectors, thereby promoting the generation of reactive oxygen species (ROS) in BA-stimulated multiple myeloma cells.
*ROS↓, Although BA is known to have antioxidant activity that blocks the accumulation of ROS due to oxidative stress in normal cells (Cheng et al. 2019;

2722- BetA,    Betulinic Acid for Cancer Treatment and Prevention
- Review, Var, NA
MMP↓, betulinic acid induced loss of mitochondrial membrane potential
Cyt‑c↑, betulinic acid was shown to trigger cytochrome c
cl‑Casp3↑, Cleavage of caspase-3 and -8 was preceded by disturbance of mitochondrial membrane potential and by generation of reactive oxygen species.
cl‑Casp8↑,
ROS↑,
NF-kB↑, Betulinic acid was identified as a potent activator of NF-κB in a number of cancer cell lines
TOP1↓, betulinic acid was shown to inhibit the catalytic activity of topoisomerase I

2729- BetA,    Betulinic acid in the treatment of tumour diseases: Application and research progress
- Review, Var, NA
ChemoSen↑, Betulinic acid can increase the sensitivity of cancer cells to other chemotherapy drugs
mt-ROS↑, BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress
STAT3↓, inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways.
NF-kB↓,
selectivity↑, A main advantage of BA and its derivatives is that they are cytotoxic to different human tumour cells, while cytotoxicity is much lower in normal cells.
*toxicity↓, It can kill cancer cells but has no obvious effect on normal cells and is also nontoxic to other organs in xenograft mice at a dose of 500 mg/kg
eff↑, BA combined with chemotherapy drugs, such as platinum and mithramycin A, can induce apoptosis in tumour cells
GRP78/BiP↑, In animal xenograft tumour models, BA enhanced the expression of glucose-regulated protein 78 (GRP78)
MMP2↓, reduced the levels of matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, in lung metastatic lesions of breast cancer, indicating that BA can reduce the invasiveness of breast cancer in vivo and block epithelial mesenchymal transformation (EMT
P90RSK↓,
TumCI↓,
EMT↓,
MALAT1↓, MALAT1, a lncRNA, was downregulated in hepatocellular carcinoma (HCC) cells treated with BA in vivo,
Glycolysis↓, Suppressing aerobic glycolysis of cancer cells by GRP78/β-Catenin/c-Myc signalling pathways
AMPK↑, activating AMPK signaling pathway
Sp1/3/4↓, inhibiting Sp1. BA at 20 mg/kg/d, the tumour volume and weight were significantly reduced, and the expression levels of Sp1, Sp3, and Sp4 in tumour tissues were lower than those in control mouse tissues
Hif1a↓, Suppressing the hypoxia-induced accumulation of HIF-1α and expression of HIF target genes
angioG↓, PC3: Having anti-angiogenesis effect
NF-kB↑, LNCaP, DU145 — Inducing apoptosis and NF-κB pathway
NF-kB↓, U266 — Inhibiting NF-κB pathway.
MMP↓, BA produces ROS and reduces mitochondrial membrane potential; the mitochondrial permeability transition pore of the mitochondrial membrane plays an important role in apoptosis signal transduction.
Cyt‑c↑, Mitochondria release cytochrome C and increase the levels of Caspase-9 and Caspase-3, inducing cell apoptosis.
Casp9↑,
Casp3↑,
RadioS↑, BA could be a promising drug for increasing radiosensitization in oral squamous cell carcinoma radiotherapy.
PERK↑, BA treatment increased the activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) apoptosis pathway and decreased the expression of Sp1.
CHOP↑,
*toxicity↓, BA at a concentration of 50 μg/ml did not inhibit the growth of normal peripheral blood lymphocytes, indicating that the toxicity of BA was at least 1000 times less than that of doxorubicin

2732- BetA,  Chemo,    Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
ChemoSen↑, Here in, we found that BA has synergistic effects with taxol to induce breast cancer cells G2/M checkpoint arrest and apoptosis induction,
selectivity↑, but had little cytotoxicity effects on normal mammary epithelial cells.
GRP78/BiP↑, identified glucose-regulated protein 78 (GRP78) as the direct interacting target of BA.
ER Stress↑, BA administration significantly elevated GRP78-mediated endoplasmic reticulum (ER) stress and resulted in the activation of protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor 2a/CCAAT/enhancer-binding protein homologous protein apopt
PERK↑,
Ca+2↑, We found that BA significantly elevated intracellular free calcium concentration
Cyt‑c↑, increased Cytochrome c and Bax, and the downregulation of Bcl-2
BAX↑,
Bcl-2↓,

2735- BetA,    Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications
- Review, Var, NA
mt-Apoptosis↑, BA and analogues (BAs) have been known to exhibit potential antitumor action via provoking the mitochondrial pathway of apoptosis
Casp↑, cytosolic caspase activation
p38↑, inhibition of pro-apoptotic p38, MAPK and SAP/JNK kinases [8],
MAPK↓,
JNK↓,
VEGF↓, decreased expression of pro-apoptotic proteins and vascular endothelial growth factor (VEGF)
AIF↑, BA was recognized to trigger the process of apoptosis in human metastatic melanoma cells (Me-45) by releasing apoptosis inducing factor (AIF) and cytochrome c (Cyt C) through mitochondrial membrane
Cyt‑c↑,
ROS↑, BA also stimulates the increased production of reactive oxygen species (ROS) that is considered a stress factor involved in initiating mitochondrial membrane permeabilization
Ca+2↑, Moreover, the calcium overload and thereby ATP depletion are other stress factors causing enhanced inner mitochondrial membrane permeability via nonspecific pores formation
ATP↓,
NF-kB↓, BA has also known to be involved in activation of nuclear factor kappa B (NF-κB) that is responsible for apoptosis induction in variety of cancer cells
ATF3↓, According to Zhang et al. [14], BA stimulates apoptosis through the suppression of cyclic AMP-dependent transcription factor ATF-3 and NF-κB pathways and downregulation of p53 gene.
TOP1↓, inhibition of topoisomerases
VEGF↓, ecreased expression of vascular endothelial growth (VEGF) and the anti-apoptotic protein surviving in LNCaP prostate cancer cells.
survivin↓,
Sp1/3/4↓, selective proteasome-dependent targeted degradation of transcription factors specificity proteins (Sp1, Sp3, and Sp4), which generally regulate VEGF and survivin expression and highly over-expressed in tumor conditions
MMP↓, perturbed mitochondrial membrane potential
ChemoSen↑, BA can support as sensitizer in combination therapy to enhance the anticancer effects with minimum side effects.
selectivity↑, Normal human fibroblasts [41], peripheral blood lymphoblasts [41], melanocytes [32] and astrocytes [30] were found to be resistant to BA in vitro
BioAv↓, The clinical use of BA is seriously challenging due to high hydrophobicity which subsequently causes poor bioavailability
BioAv↑, A BA-loaded oil-in-water nanoemulsion was developed using phospholipase-catalyzed modified phosphatidylcholine as emulsifier in an ultrasonicator [120].
BioAv↑, Aqueous solubility of BA may also be increased through grinding with hydrophilic polymers (polyethylene glycol, polyvinylpyrrolidone, arabinogalactan) [121,122].
BioAv↑, Subsequently, for further improvement in biocompatibility, a technique of nanotube coating was employed with four biopolymers i.e. polyethylene glycol (PEG), chitosan, tween 20 and tween 80.
BioAv↑, Similarly, BA-coated silver nanoparticles displayed an improved antiproliferative and antimigratory activity, particularly against melanoma cells (A375: murine melanoma cells)

2736- BetA,  Chemo,    Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis
- Review, Var, NA
chemoP↑, reviews about cancer chemopreventive role of betulinic acid against wide variety of cancers [18,19,20,21].
p‑STAT3↓, betulinic acid reduced the levels of p-STAT3 in tumor tissues derived from KB cells
JAK1↓, Betulinic acid exerted inhibitory effects on the constitutive phosphorylation of JAK1 and JAK2
JAK2↓,
VEGF↓, betulinic acid mediated inhibition of VEGF
EGFR↓, evaluation of betulinic acid as a next-generation EGFR inhibitor
Cyt‑c↑, release of SMAC/DIABLO and cytochrome c from mitochondria in SHEP neuroblastoma cells
Diablo↑,
AMPK↑, Betulinic acid induced activation of AMPK and consequently reduced the activation of mTOR.
mTOR↓,
Sp1/3/4↓, Betulinic acid significantly reduced the quantities of Sp1, Sp3 and Sp4 in the tissues of the tumors derived from RKO cells
DNAdam↑, Betulinic acid efficiently triggered DNA damage (γH2AX) and apoptosis (caspase-3 and p53 phosphorylation) in temozolomide-sensitive and temozolomide-resistant glioblastoma cells.
Gli1↓, Betulinic acid effectively reduced GLI1, GLI2 and PTCH1 in RMS-13 cells.
GLI2↓,
PTCH1↓,
MMP2↓, betulinic acid exerted inhibitory effects on MMP-2 and MMP-9 in HepG2 cells.
MMP9↓,
miR-21↓, Collectively, p53 increased miR-21 levels and inhibited SOD2 levels, leading to significant increase in the accumulation of ROS levels and apoptotic cell death.
SOD2↓,
ROS↑,
Apoptosis↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 12

Results for Effect on Cancer/Diseased Cells:
AIF↑,2,   p‑Akt↓,1,   AMPK↑,2,   angioG↓,2,   AntiTum↑,1,   Apoptosis↑,4,   mt-Apoptosis↑,1,   ATF3↓,1,   ATP↓,1,   BAX↑,2,   Bax:Bcl2↑,1,   Bcl-2↓,3,   BioAv↓,2,   BioAv↑,4,   Ca+2↑,2,   Casp↑,3,   Casp3↑,3,   cl‑Casp3↑,2,   Casp8↑,1,   cl‑Casp8↑,1,   Casp9↑,3,   chemoP↑,1,   ChemoSen↑,5,   CHOP↑,1,   COX2↓,1,   cycA1↓,1,   CycB↓,1,   Cyt‑c↑,12,   Diablo↑,2,   DNAdam↑,1,   eff↓,2,   eff↑,1,   EGFR↓,1,   EMT↓,2,   ER Stress↑,1,   ERK↓,1,   FTH1↓,1,   GCLM↓,1,   Gli1↓,1,   GLI2↓,1,   Glycolysis↓,1,   GRP78/BiP↑,2,   GSTA1↓,1,   GSTs↓,1,   Hif1a↓,1,   ICAM-1↓,1,   JAK1↓,1,   JAK2↓,1,   JNK↓,1,   JNK↑,1,   LAMs↓,1,   MALAT1↓,1,   MAPK↓,1,   MAPK↑,1,   MCP1↓,1,   MDA↑,1,   miR-21↓,1,   MMP↓,8,   MMP2↓,2,   MMP9↓,2,   mTOR↓,1,   NF-kB↓,9,   NF-kB↑,3,   P21↑,1,   p38↑,2,   P90RSK↓,1,   PARP↓,1,   cl‑PARP1↑,1,   PERK↑,2,   PGE2↓,1,   PTCH1↓,1,   RadioS↑,3,   ROS↓,1,   ROS↑,6,   i-ROS↑,1,   mt-ROS↑,1,   selectivity↑,6,   Sepsis↓,1,   Smad1↑,1,   SOD↓,1,   SOD2↓,2,   Sp1/3/4↓,4,   STAT3↓,2,   p‑STAT3↓,1,   survivin↓,1,   TOP1↓,5,   TumCCA↑,3,   TumCI↓,1,   TumVol↓,1,   VEGF↓,4,  
Total Targets: 90

Results for Effect on Normal Cells:
ALAT↓,1,   antiOx↑,1,   AST↓,1,   Catalase↑,1,   GSH↑,1,   hepatoP↑,2,   Inflam↓,1,   LDH↓,1,   RenoP↑,1,   ROS↓,3,   SOD↑,1,   toxicity↓,3,   α-SMA↓,1,  
Total Targets: 13

Scientific Paper Hit Count for: Cyt‑c, cyt-c Release into Cytosol
12 Betulinic acid
2 Chemotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:42  Target#:77  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page