condition found
Features: |
Luteolin a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers. -MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition. *** ACTIVE WORK IN PROGRESS** -Note half-life 2–3 hours BioAv low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol Pathways: - induce ROS production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, LDHA↓, HK2↓, GRP78↑, - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Enzymes involved in regulating gene expression by removing acetyl groups from histones, the proteins around which DNA is wrapped. -Many cancers exhibit altered expression levels of HDACs, which can contribute to the dysregulation of genes involved in cell growth, survival, and differentiation. -HDACs can repress the expression of tumor suppressor genes, leading to uncontrolled cell proliferation and survival. This repression can be a key factor in the development and progression of cancer. -HDAC inhibitors (HDACi) have been developed and are being investigated for their ability to reactivate silenced genes, induce cell cycle arrest, and promote apoptosis in cancer cells. -HDAC1, HDAC2): Often overexpressed in various cancers, including breast, prostate, and colorectal cancers. Their overexpression is associated with poor prognosis. -HDAC4, HDAC5): These may have both oncogenic and tumor-suppressive roles depending on the context and cancer type. -While HDACs are not classified as traditional oncogenes, their overexpression and activity can contribute to oncogenic processes. -HDAC inhibitor works by preventing the removal of acetyl groups from histones, thereby modulating gene expression, influencing cell behavior, and potentially reversing aberrant gene silencing seen in various diseases. -HDAC inhibitors can help reactivate these genes, thereby inhibiting growth and inducing apoptosis in cancer cells. |
2915- | LT,  |   | Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells |
- | in-vitro, | Colon, | HT29 | - | in-vitro, | CRC, | SNU-407 | - | in-vitro, | Nor, | FHC |
2919- | LT,  |   | Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence |
- | Review, | Var, | NA |
2927- | LT,  |   | Luteolin Causes 5′CpG Demethylation of the Promoters of TSGs and Modulates the Aberrant Histone Modifications, Restoring the Expression of TSGs in Human Cancer Cells |
- | in-vitro, | Cerv, | HeLa |
1064- | LT,  | Cisplatin,  |   | Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells |
- | vitro+vivo, | Lung, | LNM35 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:118 Target#:140 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid