condition found tbRes List
LT, Luteolin: Click to Expand ⟱
Features:
Luteolin a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers.
-MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition.

*** ACTIVE WORK IN PROGRESS**

-Note half-life 2–3 hours
BioAv low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol
Pathways:
- induce ROS production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, LDHA↓, HK2, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HK2, Hexokinase 2: Click to Expand ⟱
Source:
Type: enzyme
HK2 (Hexokinase 2) is an enzyme that plays a crucial role in glycolysis, the process by which cells convert glucose into energy. HK2 is a key regulatory enzyme in the glycolytic pathway, and it is primarily expressed in various tissues, including muscle, brain, and cancer cells.
HK2 has been shown to be overexpressed in many types of tumors, including breast, lung, and colon cancer. This overexpression may contribute to the development and progression of cancer by promoting glycolysis and energy production in cancer cells.
HK2 is a key regulatory enzyme in the glycolytic pathway.
HK2 plays a role in the regulation of glucose metabolism in diabetes.
HK2 is involved in the regulation of cell proliferation, apoptosis, and autophagy.

HK2 Inhibitors:
-2DG
-Curcumin
-Resveratrol
-EGCG
-Berberine
-Methyl Jasmonate (MJ)
-Honokiol


Scientific Papers found: Click to Expand⟱
2929- LT,    Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer chemoprevention
- in-vitro, Ovarian, NA
HK2↓, . Figure 5b Aspirin and luteolin suppress HK2 and glycolysis in IOSE and FT cells.
Myc↓, Two agents, aspirin and luteolin, induced a dose-dependent decrease in the protein levels of HK2 and reduced MYC expression
Glycolysis↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
Glycolysis↓,1,   HK2↓,1,   Myc↓,1,  
Total Targets: 3

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: HK2, Hexokinase 2
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:118  Target#:773  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page