condition found
Features: |
Luteolin a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers. -MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition. *** ACTIVE WORK IN PROGRESS** -Note half-life 2–3 hours BioAv low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol Pathways: - induce ROS production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, LDHA↓, HK2↓, GRP78↑, - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: HalifaxProj (inhibit) |
Type: |
A signal protein produced by many cells that stimulates the formation of blood vessels.
Vascular endothelial growth factor (VEGF) is a signal protein that plays a crucial role in angiogenesis, the process by which new blood vessels form from existing ones. This process is vital for normal physiological functions, such as wound healing and the menstrual cycle, but it is also a key factor in the growth and spread of tumors in cancer. Because of its significant role in tumor growth and progression, VEGF has become a target for cancer therapies. Anti-VEGF therapies, such as monoclonal antibodies (e.g., bevacizumab) and small molecule inhibitors, aim to inhibit the action of VEGF, thereby reducing blood supply to tumors and limiting their growth. These therapies have been used in various types of cancer, including colorectal, lung, and breast cancer. |
2914- | LT,  |   | Therapeutic Potential of Luteolin on Cancer |
- | Review, | Var, | NA |
2916- | LT,  |   | Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies |
- | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
2919- | LT,  |   | Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence |
- | Review, | Var, | NA |
2906- | LT,  |   | Luteolin, a flavonoid with potentials for cancer prevention and therapy |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:118 Target#:334 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid