condition found tbRes List
LT, Luteolin: Click to Expand ⟱
Features:
Luteolin a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers.
-MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition.

*** ACTIVE WORK IN PROGRESS**

-Note half-life 2–3 hours
BioAv low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol
Pathways:
- induce ROS production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓">ROS, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, LDHA↓, HK2↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
• Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
• HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
• SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
• AMPK: regulates energy metabolism and can increase ROS levels when activated.
• mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
• HSP90: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
• Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
2625- Ba,  LT,    Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocyte
- in-vivo, Stroke, NA
*lipid-P↓, Baicalein and luteolin prevented the Fe-SP-induced lipid peroxidation in rat neonatal cardiomyocytes.
*ACSL4∅, Baicalein and luteolin can reduce the protein levels of ACSL4 and Nrf2, and enhance the protein levels of GPX4 in ischemia/reperfusion-treated rat hearts.
*NRF2∅, Our results suggest that BAI and Lut prevented the I/R-induced increased of ACSL4, NRF2, and HO-1 protein
*GPx4∅, BAI and Lut prevented the I/R-induced increased of ACSL4, NRF2, and HO-1 protein, and the I/R-decreased GPX4 protein levels
*Ferroptosis↓, BAI was found to suppress ferroptosis in cancer cells via reducing reactive oxygen species (ROS) generation.
*ROS↓,
*MDA↓, Moreover, both BAI and Lut decreased ROS and malondialdehyde (MDA) generation and the protein levels of ferroptosis markers, and restored Glutathione peroxidase 4 (GPX4) protein levels in cardiomyocytes reduced by ferroptosis inducers
*eff↑, BAI and Lut reduced the I/R-induced myocardium infarction
*HO-1∅, Our results suggest that BAI and Lut prevented the I/R-induced increased of ACSL4, NRF2, and HO-1 protein

2918- LT,    Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS
- in-vitro, Melanoma, A375 - in-vivo, Melanoma, NA - in-vitro, Melanoma, SK-MEL-28
TumCG↓, Luteolin inhibited melanoma tumor growth in vitro and in vivo.
ROS↑, Luteolin induced ROS in melanoma cells but ROS was not the cause of growth inhibition.
ECM/TCF↓, luteolin inhibited ECM pathway, oncogenic pathway and modulated immune signaling.

2908- LT,    Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity
- in-vitro, Arthritis, NA
*ROS↓, Luteolin significantly inhibited superoxide anion generation, ROS production, and NET formation in human neutrophils.
*p‑ERK↓, Luteolin significantly suppressed phosphorylation of extracellular signal-regulated kinase (Erk) and mitogen-activated protein kinase kinase-1 (MEK-1)
*p‑MEK↓,
*Raf↓, luteolin acts as a Raf-1 inhibitor

2911- LT,    Luteolin targets MKK4 to attenuate particulate matter-induced MMP-1 and inflammation in human keratinocytes
- in-vitro, Nor, HaCaT
*MMP1↓, luteolin effectively suppressed PM-induced MMP-1 and COX-2 expression and reduced the production of the proinflammatory cytokine IL-6.
*COX2↓,
*IL6↓,
*AP-1↓, luteolin inhibited the activation of AP-1 and NF-κB pathways and decreased reactive oxygen species (ROS) levels in HaCaT cells.
*NF-kB↓,
*ROS↓,
*p‑MKK4↑, luteolin binds directly to mitogen-activated protein kinase kinase (MKK) 4, inhibiting its kinase activity . increases phosphorylation of MKK4
*p‑JNK↓, subsequently reducing the phosphorylation of JNK1/2 and p38 mitogen-activated protein kinase.
*p‑p38↓,

2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells.
TumCCA↑,
TumCP↓,
angioG↓,
ER Stress↑, Luteolin induces mitochondrial dysfunction and activates the endoplasmic reticulum stress response in glioblastoma cells, which triggers the generation of intracellular reactive oxygen species (ROS)
mtDam↑,
PERK↑, activate the expression of stress-related proteins by mediating the phosphorylation of PERK, ATF4, eIF2α, and cleaved-caspase 12.
ATF4↑,
eIF2α↑,
cl‑Casp12↑,
EMT↓, Luteolin is known to reverse epithelial-to-mesenchymal transition (EMT), which is associated with the cancer cell progression and metastasis.
E-cadherin↑, upregulating the biomarker E-cadherin expression, followed by a significant downregulation of the N-cadherin and vimentin expression
N-cadherin↓,
Vim↓,
*neuroP↑, Furthermore, luteolin holds potential to improve the spinal damage and brain trauma caused by 1-methyl-4-phenylpyridinium due to its excellent neuroprotective properties.
NF-kB↓, downregulation and suppression of cellular pathways such as nuclear factor kappa B (NF-kB), phosphatidylinositol 3’-kinase (PI3K)/Akt, and X-linked inhibitor of apoptosis protein (XIAP)
PI3K↓,
Akt↑,
XIAP↓,
MMP↓, Furthermore, the membrane action potential of mitochondria depletes in the presence of luteolin, Ca2+ levels and Bax expression upregulate, the levels of caspase-3 and caspase-9 increase, while the downregulation of Bcl-2
Ca+2↑,
BAX↑,
Casp3↑,
Casp9↑,
Bcl-2↓,
Cyt‑c↑, cause the cytosolic release of cytochrome c from mitochondria
IronCh↑, Luteolin serves as a good metal-chelating agent owing to the presence of dihydroxyl substituents on the aromatic ring framework
SOD↓, luteolin further triggered an early phase accumulation of ROS due to the suppression of the activity of cellular superoxide dismutase.
*ROS↓, Luteolin reportedly demonstrated an optimal 43.7% inhibition of the accumulation of ROS, 24.5% decrease in malondialdehyde levels, and 38.7% lowering of lactate dehydrogenase levels at a concentration of 30 µM
*LDHA↑,
*SOD↑, expression of superoxide dismutase ameliorated by 73.7%, while the activity of glutathione improved by 72.3% at the same concentration of luteolin
*GSH↑,
*BioAv↓, Poor bioavailability of luteolin limits its optimal therapeutic efficacy and bioactivity
Telomerase↓, MDA-MB-231 cells with luteolin led to dose dependent arrest of cell cycle in S phase by reducing the levels of telomerase and by inhibiting the phosphorylation of NF-kB inhibitor α along with its target gene c-Myc
cMyc↓,
hTERT↓, These events led to the suppression of the expression of human telomerase reverse transcriptase (hTERT) encoding for the catalytic subunit of telomerase
DR5↑, luteolin upregulated the expression of caspase cascades and death receptors, including DR5
Fas↑, expression of proapoptotic genes such as FAS, FADD, BAX, BAD, BOK, BID, TRADD upregulates, while the anti-apoptotic genes NAIP, BCL-2, and MCL-1 experience downregulation.
FADD↑,
BAD↑,
BOK↑,
BID↑,
NAIP↓,
Mcl-1↓,
CDK2↓, expression of cell cycle regulatory genes CDK2, CDKN2B, CCNE2, CDKN1A, and CDK4 decreased on incubation with luteolin
CDK4↓,
MAPK↓, expression of MAPK1, MAPK3, MAP3K5, MAPK14, PIK3C2A, PIK3C2B, AKT1, AKT2, and ELK1 downregulated
AKT1↓,
Akt2↓,
*Beclin-1↓, luteolin led to downregulation of the expression of hypoxia-inducible factor-1α and autophagy-associated proteins, Beclin 1, and LC3
Hif1a↓,
LC3II↑, LC3-II is upregulated following the luteolin treatment in p53 wild type HepG2 cells i
Beclin-1↑, Luteolin treatment reportedly increased the number of intracellular autophagosomes, as indicated by an increased expression of Beclin 1, and conversion of LC3B-I to LC3B-II in hepatocellular carcinoma SMMC-7721 cells.

2913- LT,    Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells
- in-vitro, GC, HGC27 - in-vitro, BC, MCF-7 - in-vitro, GC, MKN45
TumCP↓, Luteolin inhibited the proliferation of gastric cancer HGC-27, MFC and MKN-45 cells
MMP↓, impaired mitochondrial integrity and function by destroying the mitochondrial membrane potential,
Apoptosis↑, eventually leading to apoptosis of gastric cancer HGC-27, MFC and MKN-45 cells
ROS↑, luteolin-induced ROS accumulation in HGC-27, MFC and MKN-45 cells. HGC-27 and MFC cells were treated with luteolin (10, 40, and 70 µM) for 24 h, and MKN-45 cells were treated for 48 h
SOD↓, suggested that luteolin could induce SOD activity reduction, especially in the high dose of luteolin groups in HGC-27 and MFC cells
ATP↓, ATP content decreased, especially in the high-dose groups
Bax:Bcl2↑, luteolin significantly decreased the ratio between Bcl-2 and Bax in HGC-27, MFC, and MKN-45 cells
TumCCA↑, In addition, it is reported that luteolin could induce cell cycle arrest and apoptosis through extrinsic and intrinsic signaling pathways in MCF-7 breast cancer cell

2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, As an antioxidant, Luteolin and its glycosides can scavenge free radicals caused by oxidative damage and chelate metal ions
*IronCh↑,
*toxicity↓, The safety profile of Luteolin has been proven by its non-toxic side effects, as the oral median lethal dose (LD50) was found to be higher than 2500 and 5000 mg/kg in mice and rats, respectively, equal to approximately 219.8−793.7 mg/kg in humans
*BioAv↓, One major problem related to the use of flavonoids for therapeutic purposes is their low bioavailability.
*BioAv↑, Resveratrol, which functions as the inhibitor of UGT1A1 and UGT1A9, significantly improved the bioavailability of Luteolin by decreasing the major glucuronidation metabolite in rats
DNAdam↑, Luteolin’s anticancer properties, which involve DNA damage, regulation of redox, and protein kinases in inhibiting cancer cell proliferation
TumCP↓,
DR5↑, Luteolin was discovered to promote apoptosis of different cancer cells by increasing Death receptors, p53, JNK, Bax, Cleaved Caspase-3/-8-/-9, and PARP expressions
P53↑,
JNK↑,
BAX↑,
cl‑Casp3↑,
cl‑Casp8↑,
cl‑Casp9↑,
cl‑PARP↑,
survivin↓, downregulating proteins involved in cell cycle progression, including Survivin, Cyclin D1, Cyclin B, and CDC2, and upregulating p21
cycD1↓,
CycB↓,
CDC2↓,
P21↑,
angioG↓, suppress angiogenesis in cancer cells by inhibiting the expression of some angiogenic factors, such as MMP-2, AEG-1, VEGF, and VEGFR2
MMP2↓,
AEG1↓,
VEGF↓,
VEGFR2↓,
MMP9↓, inhibit metastasis by inhibiting several proteins that function in metastasis, such as MMP-2/-9, CXCR4, PI3K/Akt, ERK1/2
CXCR4↓,
PI3K↓,
Akt↓,
ERK↓,
TumAuto↑, can promote the conversion of LC3B I to LC3B II and upregulate Beclin1 expression, thereby causing autophagy
LC3B-II↑,
EMT↓, Luteolin was identified to suppress the epithelial to mesenchymal transition by upregulating E-cadherin and downregulating N-cadherin and Wnt3 expressions.
E-cadherin↑,
N-cadherin↓,
Wnt↓,
ROS↑, DNA damage that is induced by reactive oxygen species (ROS),
NICD↓, Luteolin can block the Notch intracellular domain (NICD) that is created by the activation of the Not
p‑GSK‐3β↓, Luteolin can inhibit the phosphorylation of the GSK3β induced by Wnt, resulting in the prevention of GSK3β inhibition
iNOS↓, Luteolin in colon cancer and the complications associated with it, particularly the decreasing effect on the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)
COX2↓,
NRF2↑, Luteolin has been identified to increase the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a crucial transcription factor with anticarcinogenic properties related
Ca+2↑, caused loss of the mitochondrial membrane action potential, enhanced levels of mitochondrial calcium (Ca2+),
ChemoSen↑, Luteolin enhanced the effect of one of the most effective chemotherapy drugs, cisplatin, on CRC cells
ChemoSen↓, high dose of Luteolin application negatively affected the oxaliplatin-based chemotherapy in a p53-dependent manner [52]. They suggested that the flavonoids with Nrf2-activating ability might interfere with the chemotherapeutic efficacy of anticancer
IFN-γ↓, decreased the expression of interferon-gamma-(IFN-γ)
RadioS↑, suggested that Luteolin can act as a radiosensitizer, promoting apoptosis by inducing p38/ROS/caspase cascade
MDM2↓, Luteolin treatment was associated with increased p53 and p21 and decreased MDM4 expressions both in vitro and in vivo.
NOTCH1↓, Luteolin suppressed the growth of lung cancer cells, metastasis, and Notch-1 signaling pathway
AR↓, downregulating the androgen receptor (AR) expression
TIMP1↑, Luteolin inhibits the migration of U251MG and U87MG human glioblastoma cell lines by downregulating MMP-2 and MMP-9 and upregulating the tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2.
TIMP2↑,
ER Stress↑, Luteolin caused oxidative stress and ER stress in the Hep3B cells,
CDK2↓, Luteolin’s ability to decrease Akt, polo-like kinase 1 (PLK1), cyclin B1, cyclin A, CDC2, cyclin-dependent kinase 2 (CDK2) and Bcl-xL
Telomerase↓, Luteolin dose-dependently inhibited the telomerase levels and caused the phosphorylation of NF-κB and the target gene of NF-κB, c-Myc to suppress the human telomerase reverse transcriptase (hTERT)
p‑NF-kB↑,
p‑cMyc↑,
hTERT↓,
RAS↓, Luteolin was found to suppress the expressions of K-Ras, H-Ras, and N-Ras, which are the activators of PI3K
YAP/TEAD↓, Luteolin caused significant inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ)
TAZ↓,
NF-kB↓, Luteolin was found to have a strong inhibitory effect on the NF-κB
NRF2↓, Luteolin-loaded nanoparticles resulted in a significant reduction in the Nrf2 levels compared to Luteolin alone.
HO-1↓, The expressions of the downstream genes of Nrf2, Ho1, and MDR1 were also reduced, where inhibition of Nrf2 expression significantly increased the cell death of breast cancer cells
MDR1↓,

2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, luteolin inhibited the expression of DNA methyltransferases, a transcription repressor, and increased the expression and activity of ten-eleven translocation (TET) DNA demethylases,
TET1↑,
NRF2↑, luteolin decreased the methylation of the Nrf2 promoter region, which corresponded to the increased mRNA expression of Nrf2
HDAC↓, Recently, Zao et al. demonstrated that luteolin epigenetically activates the Nrf2 pathway by downregulating DNA methyltransferase (DNMT) and histone deacetylase (HDAC) expression
tumCV↓, Luteolin decreased the viability of all three cell lines in a dose-dependent manner
BAX↑, luteolin upregulated the expression of the apoptotic protein Bax, active caspase-9, and active caspase-3, while it downregulated the expression of the anti-apoptotic protein Bcl-2,
Casp9↑,
Casp3↑,
Bcl-2↓,
ROS↓, Luteolin promotes ROS scavenging by inducing the expression of antioxidant enzymes
GSS↑, luteolin increased the protein expression of the antioxidant enzymes GCLc, GSS, catalase, and HO-1 in a dose- and time-dependent manner
Catalase↑,
HO-1↑,
DNMT1↓, Luteolin markedly decreased the protein expression of DNMT1, DNMT3A, and DNMT3B in a dose- and time-dependent manner
DNMT3A↓,
TET1↑, In contrast, it markedly increased the protein expression of TET1, TET2, and TET3 in a dose- and time-dependent manner
TET3↑,
TET2↓,
P53↑, Luteolin upregulated the expression of p53 and its target p21 in a dose- and time-dependent manner
P21↑,

2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, , by inactivating proteins; such as procaspase‐9, CDC2 and cyclin B or upregulation of caspase‐9 and caspase‐3, cytochrome C, cyclin A, CDK2, and APAF‐1, in turn inducing cell cycle
CDC2↓,
CycB↓,
Casp9↑,
Casp3↑,
Cyt‑c↑,
cycA1↑,
CDK2↓, inhibit CDK2 activity
APAF1↑,
TumCCA↑,
P53↑, enhances phosphorylation of p53 and expression level of p53‐targeted downstream gene.
BAX↑, Increasing BAX protein expression; decreasing VEGF and Bcl‐2 expression it can initiate cell cycle arrest and apoptosis.
VEGF↓,
Bcl-2↓,
Apoptosis↑,
p‑Akt↓, reduce expression levels of p‐Akt, p‐EGFR, p‐Erk1/2, and p‐STAT3.
p‑EGFR↓,
p‑ERK↓,
p‑STAT3↓,
cardioP↑, Luteolin plays positive role against cardiovascular disorders by improving cardiac function
Catalase↓, It can reduce activity levels of catalase, superoxide dismutase, and GS4
SOD↓,
*BioAv↓, bioavailability of luteolin is very low. Due to the momentous first pass effect, only 4.10% was found to be available from dosage of 50 mg/kg intake of luteolin
*antiOx↓, luteolin classically exhibits antioxidant features
*ROS↓, The antioxidant potential of luteolin and its glycosides is mainly due to scavenging activity against reactive oxygen species (ROS) and nitrogen species
*NO↓,
*GSTs↑, Luteolin may also have a role in protection and enhancement of endogenous antioxidants such as glutathione‐S‐transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT)
*GSR↑,
*SOD↑,
*Catalase↑,
*lipid-P↓, Luteolin supplementation significantly suppressed the lipid peroxidation
PI3K↓, inhibits PI3K/Akt signaling pathway to induce apoptosis
Akt↓,
CDK2↓, inhibit CDK2 activity
BNIP3↑, upregulation of BNIP3 gene
hTERT↓, Suppress hTERT in MDA‐MB‐231 breast cancer cel
DR5↑, Boost DR5 expression
Beclin-1↑, Activate beclin 1
TNF-α↓, Block TNF‐α, NF‐κB, IL‐1, IL‐6,
NF-kB↓,
IL1↓,
IL6↓,
EMT↓, Suppress EMT essentially notable in cancer metastasis
FAK↓, Block EGFR‐signaling pathway and FAK activity
E-cadherin↑, increasing E‐cadherin expression by inhibiting mdm2
MDM2↓,
NOTCH↓, Inhibit NOTCH signaling
MAPK↑, Activate MAPK to inhibit tumor growt
Vim↓, downregulation of vimentin, N‐cadherin, Snail, and induction of E‐cadherin expressions
N-cadherin↓,
Snail↓,
MMP2↓, negatively regulated MMP2 and TWIST1
Twist↓,
MMP9↓, Inhibit matrix metalloproteinase‐9 expressions;
ROS↑, Induce apoptosis, reactive oxygen development, promotion of mitochondrial autophagy, loss of mitochondrial membrane potential
MMP↓,
*AChE↓, Reduce AchE activity to slow down inception of Alzheimer's disease‐like symptoms
*MMP↑, Reverse mitochondrial membrane potential dissipation
*Aβ↓, Inhibit Aβ25‐35
*neuroP↑, reduces neuronal apoptosis; inhibits Aβ generation
Trx1↑, luteolin against human bladder cancer cell line T24 was due to induction cell‐cycle arrest at G2/M, downregulation of p‐S6, suppression of cell survival, upregulation of p21 and TRX1, reduction in ROS levels.
ROS↓,
*NRF2↑, Luteolin reduced renal injury by inhibiting XO activity, modulating uric acid transporters, as well as activating Nrf2 HO‐1/NQO1 antioxidant pathways and renal SIRT1/6 cascade.
NRF2↓, Luteolin exerted anticancer effects in HT29 cells as it inhibits nuclear factor‐erythroid‐2‐related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway
*BBB↑, Luteolin can be used to treat brain cancer due to ability of this molecule to easily cross the blood–brain barrier
ChemoSen↑, In ovarian cancer cells, luteolin chemosensitizes the cells through repressing the epithelial‐mesenchymal transition markers
GutMicro↑, Luteolin was also observed to modulate gut microbiota which reduce the number of tumors in case of colorectal cancer by enhancing the number of health‐related microbiota and reduced the microbiota related to inflammation

2917- LT,  Rad,    Luteolin acts as a radiosensitizer in non‑small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascade
- in-vitro, Lung, NA
Bcl-2↓, Combined treatment with luteolin and IR enhanced apoptotic cell death in association with downregulation of B‑cell lymphoma 2 (Bcl‑2) and activation of caspase‑3, ‑8, and ‑9; it also induced phosphorylation of MAPK and ROS accumulation
Casp3↑,
Casp8↑,
Casp9↑,
p‑p38↑,
ROS↑,
RadioS↑, luteolin acts as a radiosensitizer by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascade

2905- LT,    Luteolin blocks the ROS/PI3K/AKT pathway to inhibit mesothelial-mesenchymal transition and reduce abdominal adhesions
- in-vivo, NA, HMrSV5
*ROS↓, It attenuated H2O2-induced ROS production and reversed mesothelial-mesenchymal transition (MMT) in HMrSV5 cells.
*p‑Akt↓, Phosphorylated Akt levels were significantly reduced in LUT-treated HMrSV5 cells
*Vim↓, LUT also significantly reduced the expression of vimentin and collagen I in adherent tissues and upregulated E-cadherin expression
*E-cadherin↑,
*PI3K↓, LUT blocks the ROS/PI3K/AKT pathway, thereby inhibiting MMT and reducing PAA.

2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications
ChemoSen↑,
chemoP↑,
*lipid-P↓, ↓LPO, ↑CAT, ↑SOD, ↑GPx, ↑GST, ↑GSH, ↓TNF-α, ↓IL-1β, ↓Caspase-3, ↑IL-10
*Catalase↑,
*SOD↑,
*GPx↑,
*GSTs↑,
*GSH↑,
*TNF-α↓,
*IL1β↓,
*Casp3↓,
*IL10↑,
NRF2↓, Lung cancer model ↓Nrf2, ↓HO-1, ↓NQO1, ↓GSH
HO-1↓,
NQO1↓,
GSH↓,
MET↓, Lung cancer model ↓MET, ↓p-MET, ↓p-Akt, ↓HGF
p‑MET↓,
p‑Akt↓,
HGF/c-Met↓,
NF-kB↓, Lung cancer model ↓NF-κB, ↓Bcl-XL, ↓MnSOD, ↑Caspase-8, ↑Caspase-3, ↑PARP
Bcl-2↓,
SOD2↓,
Casp8↑,
Casp3↑,
PARP↑,
MAPK↓, LLC-induced BCP mouse model ↓p38 MAPK, ↓GFAP, ↓IBA1, ↓NLRP3, ↓ASC, ↓Caspase1, ↓IL-1β
NLRP3↓,
ASC↓,
Casp1↓,
IL6↓, Lung cancer model ↓TNF‑α, ↓IL‑6, ↓MuRF1, ↓Atrogin-1, ↓IKKβ, ↓p‑p65, ↓p-p38
IKKα↓,
p‑p65↓,
p‑p38↑,
MMP2↓, Lung cancer model ↓MMP-2, ↓ICAM-1, ↓EGFR, ↓p-PI3K, ↓p-Akt
ICAM-1↓,
EGFR↑,
p‑PI3K↓,
E-cadherin↓, Lung cancer model ↑E-cadherin, ↑ZO-1, ↓N-cadherin, ↓Claudin-1, ↓β-Catenin, ↓Snail, ↓Vimentin, ↓Integrin β1, ↓FAK
ZO-1↑,
N-cadherin↓,
CLDN1↓,
β-catenin/ZEB1↓,
Snail↓,
Vim↑,
ITGB1↓,
FAK↓,
p‑Src↓, Lung cancer model ↓p-FAK, ↓p-Src, ↓Rac1, ↓Cdc42, ↓RhoA
Rac1↓,
Cdc42↓,
Rho↓,
PCNA↓, Lung cancer model ↓Cyclin B1, ↑p21, ↑p-Cdc2, ↓Vimentin, ↓MMP9, ↑E-cadherin, ↓AIM2, ↓Pro-caspase-1, ↓Caspase-1 p10, ↓Pro-IL-1β, ↓IL-1β, ↓PCNA
Tyro3↓, Lung cancer model ↓TAM RTKs, ↓Tyro3, ↓Axl, ↓MerTK, ↑p21
AXL↓,
CEA↓, B(a)P induced lung carcinogenesis ↓CEA, ↓NSE, ↑SOD, ↑CAT, ↑GPx, ↑GR, ↑GST, ↑GSH, ↑Vitamin E, ↑Vitamin C, ↓PCNA, ↓CYP1A1, ↓NF-kB
NSE↓,
SOD↓,
Catalase↓,
GPx↓,
GSR↓,
GSTs↓,
GSH↓,
VitE↓,
VitC↓,
CYP1A1↓,
cFos↑, Lung cancer model ↓Claudin-2, ↑p-ERK1/2, ↑c-Fos
AR↓, ↓Androgen receptor
AIF↑, Lung cancer model ↑Apoptosis-inducing factor protein
p‑STAT6↓, ↓p-STAT6, ↓Arginase-1, ↓MRC1, ↓CCL2
p‑MDM2↓, Lung cancer model ↓p-PI3K, ↓p-Akt, ↓p-MDM2, ↑p-P53, ↓Bcl-2, ↑Bax
NOTCH1↓, Lung cancer model ↑Bax, ↑Cleaved-caspase 3, ↓Bcl2, ↑circ_0000190, ↓miR-130a-3p, ↓Notch-1, ↓Hes-1, ↓VEGF
VEGF↓,
H3↓, Lung cancer model ↑Caspase 3, ↑Caspase 7, ↓H3 and H4 HDAC activities
H4↓,
HDAC↓,
SIRT1↓, Lung cancer model ↑Bax/Bcl-2, ↓Sirt1
ROS↑, Lung cancer model ↓NF-kB, ↑JNK, ↑Caspase 3, ↑PARP, ↑ROS, ↓SOD
DR5↑, Lung cancer model ↑Caspase-8, ↑Caspase-3, ↑Caspase-9, ↑DR5, ↑p-Drp1, ↑Cytochrome c, ↑p-JNK
Cyt‑c↑,
p‑JNK↑,
PTEN↓, Lung cancer model 1/5/10/30/50/80/100 μmol/L ↑Cleaved caspase-3, ↑PARP, ↑Bax, ↓Bcl-2, ↓EGFR, ↓PI3K/Akt/PTEN/mTOR, ↓CD34, ↓PCNA
mTOR↓,
CD34↓,
FasL↑, Lung cancer model ↑DR 4, ↑FasL, ↑Fas receptor, ↑Bax, ↑Bad, ↓Bcl-2, ↑Cytochrome c, ↓XIAP, ↑p-eIF2α, ↑CHOP, ↑p-JNK, ↑LC3II
Fas↑,
XIAP↓,
p‑eIF2α↑,
CHOP↑,
LC3II↑,
PD-1↓, Lung cancer model ↓PD-L1, ↓STAT3, ↑IL-2
STAT3↓,
IL2↑,
EMT↓, Luteolin exerts anticancer activity by inhibiting EMT, and the possible mechanisms include the inhibition of the EGFR-PI3K-AKT and integrin β1-FAK/Src signaling pathways
cachexia↓, luteolin could be a potential safe and efficient alternative therapy for the treatment of cancer cachexi
BioAv↑, A low-energy blend of castor oil, kolliphor and polyethylene glycol 200 increases the solubility of luteolin by a factor of approximately 83
*Half-Life↝, ats administered an intraperitoneal injection of luteolin (60 mg/kg) absorbed it rapidly as well, with peak levels reached at 0.083 h (71.99 ± 11.04 μg/mL) and a prolonged half-life (3.2 ± 0.7 h)
*eff↑, Luteolin chitosan-encapsulated nano-emulsions increase trans-nasal mucosal permeation nearly 6-fold, drug half-life 10-fold, and biodistribution of luteolin in brain tissue 4.4-fold after nasal administration

2921- LT,    Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies
- Review, Nor, NA
*hepatoP↑, Due to its excellent liver protective effect, luteolin is an attractive molecule for the development of highly promising liver protective drugs.
*AMPK↑, fig2
*SIRT1↑,
*ROS↑,
STAT3↓,
TNF-α↓,
NF-kB↓,
*IL2↓,
*IFN-γ↓,
*GSH↑,
*SREBP1↓,
*ZO-1↑,
*TLR4↓,
BAX↑, anti cancer
Bcl-2↓,
XIAP↓,
Fas↑,
Casp8↑,
Beclin-1↑,
*TXNIP↓, luteolin inhibited TXNIP, caspase-1, interleukin-1β (IL-1β) and IL-18 to prevent the activation of NLRP3 inflammasome, thereby alleviating liver injury.
*Casp1↓,
*IL1β↓,
*IL18↓,
*NLRP3↓,
*MDA↓, inhibiting oxidative stress and regulating the level of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)
*SOD↑,
*NRF2↑, luteolin promoted the activation of the Nrf2/ antioxidant response element (ARE) pathway and NF-κB cell apoptosis pathway, thereby reversing the decrease in Nrf2 levels(lead induced liver injury)
*ER Stress↓, down regulate the formation of nitrotyrosine (NT) and endoplasmic reticulum (ER) stress induced by acetaminophen, and alleviate liver injury
*ALAT↓, ↓ALT, AST, MDA, iNOS, NLRP3 ↑GSH, SOD, Nrf2
*AST↓,
*iNOS↓,
*IL6↓, ↓TXNIP, NLRP3, TNF-α, IL-6 ↑HO-1, NQO1
*HO-1↑,
*NQO1↑,
*PPARα↑, ↓TNF-α, IL-6 IL-1β, Bax ↑PPARα
*ATF4↓, ↓ALT, AST, TNF-α, IL-6, MDA, ATF-4, CHOP ↑GSH, SOD
*CHOP↓,
*Inflam↓, Luteolin ameliorates MAFLD through anti-inflammatory and antioxidant effects
*antiOx↑,
*GutMicro↑, luteolin could significantly enrich more than 10% of intestinal bacterial species, thereby increasing the abundance of ZO-1, down regulating intestinal permeability and plasma lipopolysaccharide

2922- LT,    Combination of transcriptomic and proteomic approaches helps unravel the mechanisms of luteolin in inducing liver cancer cell death via targeting AKT1 and SRC
- in-vitro, Liver, HUH7
Half-Life↝, However, after oral administration, luteolin showed relatively rapid absorption and slow elimination in rats, with a tmax (time to reach peak plasma level) of approximately 1.02 h and a t1/2 (elimination half-life) of 4.94 h, indicating that luteolin
TumCCA↑, luteolin could promote cell cycle arrest and apoptosis in HuH-7 cells
AKT1↓, Dramatic downregulation of components downstream of the AKT1-ASK2-ATF2 pathway (CycD, BCL2, CycA, etc.), the AKT1-NF-κB pathway (BCL-XL and MIP2) and the AKT1-GSK3β-β-catenin pathway (c-Myc and CCND1)
ATF2↓,
NF-kB↓,
GSK‐3β↓,
cMyc↓,
GSTs↓, expression change of NQO-1, GSTs, and TRXR1 indicated the increase in ROS
TrxR1↓,
ROS↑,

2930- LT,    Luteolin confers renoprotection against ischemia–reperfusion injury via involving Nrf2 pathway and regulating miR320
- in-vitro, Nor, NA
*RenoP↑, luteolin protects the kidney against I/R injury via reducing oxidative stress, increasing antioxidant enzymes and reducing expression of Nrf2 and miR320.
*ROS↓,
*antiOx↑,
*NRF2↓,

1084- LT,  CHr,    Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells
- in-vitro, Nor, RAW264.7
*COX2↓, 25, 50, or 100 micromol/L concentrations of luteolin inhibited (lipopolysaccharide (LPS)-induced) Cox-2 protein expression
*COX2∅, Chrysin pretreatment did not reduce (LPS-induced) Cox-2 protein expression at any level tested.
*PGE2↓, both luteolin and chrysin completely suppressed (LPS-induced) PGE2 formation
*ROS↓, only Luteolin suppressed superoxide formation (induced by xanthine)

1100- LT,    Luteolin, a flavonoid, as an anticancer agent: A review
- Review, NA, NA
TumCP↓,
TumCCA↑,
Apoptosis↑,
EMT↓, reverse epithelial-mesenchymal transition (EMT)
E-cadherin↑,
N-cadherin↓,
Snail↓,
Vim↓,
ROS↑, Luteolin increases levels of intracellular reactive oxygen species (ROS) by activation
ER Stress↑,
mtDam↑, mitochondrial dysfunction
p‑eIF2α↝,
p‑PERK↝,
p‑CHOP↝,
p‑ATF4↝,
cl‑Casp12↝,

2907- LT,    Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems
- in-vitro, Nor, NA
*ROS↓, Intracellular ROS levels and damage to cellular components such as lipids and DNA in H2O2-treated cells were significantly decreased by luteolin pretreatment.
*Casp9↓, Luteolin suppressed active caspase-9 and caspase-3 levels while increasing Bcl-2 expression and decreasing Bax protein levels.
*Casp3↓,
*Bcl-2↑,
*BAX↓,
*GSH↑, luteolin restored levels of glutathione that was reduced in response to H2O2.
*SOD↑, luteolin enhanced the activity and protein expressions of superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase-1.
*Catalase↑,
*GPx↑,
*HO-1↑,
*antiOx↑, upregulating antioxidant enzymes.
*lipid-P↓, protective effect of luteolin against lipid peroxidation
*p‑γH2AX↓, showed that luteolin pretreatment diminished expression levels of phospho-H2A.X in H2O2-exposed cells
eff↑, promising therapeutic agent for management and treatment of conditions such as COPD and pulmonary fibrosis.

2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, Luteolin induced a lethal endoplasmic reticulum stress response and mitochondrial dysfunction in glioblastoma cells by increasing intracellular reactive oxygen species (ROS) levels.
ROS↑,
PERK↑, Luteolin induced expression of ER stress-associated proteins, including phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12.
eIF2α↑,
ATF4↑,
CHOP↑,
Casp12↑,
eff↓, Inhibition of ROS production by anti-oxidant N-acetylcysteine could reverse luteolin-induced ER stress and mitochondrial pathways activation as well as apoptosis.
UPR↑, Researches indicate that abnormalities in ER function can cause ER stress, resulting in unfolded protein response (UPR),
MMP↓, integrity of mitochondrial membranes potential decreased in U87MG cells after treatment of 40 uM luteolin
Cyt‑c↑, release of cytochrome C to cytoplasm was elevated in U251MG cells
Bcl-2↓, significantly decreased the expression of anti-apoptotic protein Bcl-2 and increased the expression of pro-apoptotic protein Bax in U251MG and U87MG glioblastoms cells.
BAX↑,
TumCG↓, Luteolin inhibited tumor growth in a xenograft mouse model
Weight∅, luteolin did not affect body weight, alanine aminotransferase (ALT) or aspartate transaminase (AST)
ALAT∅,
AST∅,

2904- LT,    Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons
- in-vitro, Park, SK-N-SH - in-vitro, AD, NA
*ROS↓, Food-derived compound luteolin possesses multitarget actions including reactive oxygen species (ROS)-scavenging activit
*neuroP↑, Upon the ROS-insulted primary neurons, luteolin concentration-dependently enhanced neuronal cell survival with efficacy higher than and potency similar to vitamin E.
*MMP↑, prevented the decreases in activities of mitochondria, catalase, and glutathione in ROS-insulted primary neurons
*Catalase↑, decreases of catalase/glutathione activity by H 2O 2 were markedly reversed following luteolin treatment.
*GSH↑,
selectivity↑, Results showed that luteolin mildly inhibited the viability of SK-N-SH cells (50% inhibition at 68.7 uM) and relatively strongly inhibited that of HuH-7 cells (50% inhibition at 14.3 uM), but did not affect that of primary neurons
*eff↑, luteolin can be designated as a potent neuroprotectant as well as suggesting that it may be effective either in the treatment of neurodegenerative diseases, such as cerebral ischemia, Parkinsons, and AD, or in the improvement of brain aging
*Cyt‑c↓, reduction of cytochrome c release from mitochondria into cytosome,

2906- LT,    Luteolin, a flavonoid with potentials for cancer prevention and therapy
- Review, Var, NA
*Inflam↓, anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically
AntiCan↑,
antiOx⇅, With low Fe ion concentrations (< 50 μM), luteolin behaves as an antioxidant while high Fe concentrations (>100 μM) induce luteolin's pro-oxidative effect
Apoptosis↑, induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis.
TumCP↓,
TumMeta↓,
angioG↓,
PI3K↓, , luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3′-kinase (PI3K)/Akt, nuclear factor kappa B (NF-κB), and X-linked inhibitor of apoptosis protein (XIAP)
Akt↓,
NF-kB↓,
XIAP↓, luteolin inhibits PKC activity, which results in a decrease in the protein level of XIAP by ubiquitination and proteasomal degradation of this anti-apoptotic protein
P53↑, stimulating apoptosis pathways including those that induce the tumor suppressor p53
*ROS↓, Direct evidence showing luteolin as a ROS scavenger was obtained in cell-free systems
*GSTA1↑, Third, luteolin may exert its antioxidant effect by protecting or enhancing endogenous antioxidants such as glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT)
*GSR↑,
*SOD↑,
*Catalase↑,
*other↓, luteolin may chelate transition metal ions responsible for the generation of ROS and therefore inhibit lipooxygenase reaction, or suppress nontransition metal-dependent oxidation
ROS↑, Luteolin has been shown to induce ROS in untransformed and cancer cells
Dose↝, It is believed that flavonoids could behave as antioxidants or pro-oxidants, depending on the concentration and the source of the free radicals
chemoP↑, may act as a chemopreventive agent to protect cells from various forms of oxidant stresses and thus prevent cancer development
NF-kB↓, We found that luteolin-induced oxidative stress causes suppression of the NF-κB pathway while it triggers JNK activation, which potentiates TNF-induced cytotoxicity in lung cancer cells
JNK↑,
p27↑, Table 1
P21↑,
DR5↑,
Casp↑,
Fas↑,
BAX↑,
MAPK↓,
CDK2↓,
IGF-1↓,
PDGF↓,
EGFR↓,
PKCδ↓,
TOP1↓,
TOP2↓,
Bcl-xL↓,
FASN↓,
VEGF↓,
VEGFR2↓,
MMP9↓,
Hif1a↓,
FAK↓,
MMP1↓,
Twist↓,
ERK↓,
P450↓, Recently, it was determined that luteolin potently inhibits human cytochrome P450 (CYP) 1 family enzymes such as CYP1A1, CYP1A2, and CYP1B1, thereby suppressing the mutagenic activation of carcinogens
CYP1A1↓,
CYP1A2↓,
TumCCA↑, Luteolin is able to arrest the cell cycle during the G1 phase in human gastric and prostate cancer, and in melanoma cells


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 21

Results for Effect on Cancer/Diseased Cells:
AEG1↓,1,   AIF↑,1,   Akt↓,3,   Akt↑,1,   p‑Akt↓,2,   AKT1↓,2,   Akt2↓,1,   ALAT∅,1,   angioG↓,3,   AntiCan↑,1,   antiOx⇅,1,   APAF1↑,1,   Apoptosis↑,4,   AR↓,2,   ASC↓,1,   AST∅,1,   ATF2↓,1,   ATF4↑,2,   p‑ATF4↝,1,   ATP↓,1,   AXL↓,1,   BAD↑,1,   BAX↑,7,   Bax:Bcl2↑,1,   Bcl-2↓,7,   Bcl-xL↓,1,   Beclin-1↑,3,   BID↑,1,   BioAv↑,1,   BNIP3↑,1,   BOK↑,1,   Ca+2↑,2,   cachexia↓,1,   cardioP↑,1,   Casp↑,1,   Casp1↓,1,   Casp12↑,1,   cl‑Casp12↑,1,   cl‑Casp12↝,1,   Casp3↑,5,   cl‑Casp3↑,1,   Casp8↑,3,   cl‑Casp8↑,1,   Casp9↑,4,   cl‑Casp9↑,1,   proCasp9↓,1,   Catalase↓,2,   Catalase↑,1,   CD34↓,1,   CDC2↓,2,   Cdc42↓,1,   CDK2↓,5,   CDK4↓,1,   CEA↓,1,   cFos↑,1,   chemoP↑,2,   ChemoSen↓,1,   ChemoSen↑,3,   CHOP↑,2,   p‑CHOP↝,1,   CLDN1↓,1,   cMyc↓,2,   p‑cMyc↑,1,   COX2↓,1,   CXCR4↓,1,   cycA1↑,1,   CycB↓,2,   cycD1↓,1,   CYP1A1↓,2,   CYP1A2↓,1,   Cyt‑c↑,4,   DNAdam↑,1,   DNMT1↓,1,   DNMT3A↓,1,   DNMTs↓,1,   Dose↝,1,   DR5↑,5,   E-cadherin↓,1,   E-cadherin↑,4,   ECM/TCF↓,1,   eff↓,1,   eff↑,1,   EGFR↓,1,   EGFR↑,1,   p‑EGFR↓,1,   eIF2α↑,2,   p‑eIF2α↑,1,   p‑eIF2α↝,1,   EMT↓,5,   ER Stress↑,4,   ERK↓,2,   p‑ERK↓,1,   FADD↑,1,   FAK↓,3,   Fas↑,4,   FasL↑,1,   FASN↓,1,   GPx↓,1,   GSH↓,2,   GSK‐3β↓,1,   p‑GSK‐3β↓,1,   GSR↓,1,   GSS↑,1,   GSTs↓,2,   GutMicro↑,1,   H3↓,1,   H4↓,1,   Half-Life↝,1,   HDAC↓,2,   HGF/c-Met↓,1,   Hif1a↓,2,   HO-1↓,2,   HO-1↑,1,   hTERT↓,3,   ICAM-1↓,1,   IFN-γ↓,1,   IGF-1↓,1,   IKKα↓,1,   IL1↓,1,   IL2↑,1,   IL6↓,2,   iNOS↓,1,   IronCh↑,1,   ITGB1↓,1,   JNK↑,2,   p‑JNK↑,1,   LC3B-II↑,1,   LC3II↑,2,   MAPK↓,3,   MAPK↑,1,   Mcl-1↓,1,   MDM2↓,2,   p‑MDM2↓,1,   MDR1↓,1,   MET↓,1,   p‑MET↓,1,   MMP↓,4,   MMP1↓,1,   MMP2↓,3,   MMP9↓,3,   mtDam↑,2,   mTOR↓,1,   N-cadherin↓,5,   NAIP↓,1,   NF-kB↓,8,   p‑NF-kB↑,1,   NICD↓,1,   NLRP3↓,1,   NOTCH↓,1,   NOTCH1↓,2,   NQO1↓,1,   NRF2↓,3,   NRF2↑,2,   NSE↓,1,   P21↑,3,   p27↑,1,   p‑p38↑,2,   P450↓,1,   P53↑,4,   p‑p65↓,1,   PARP↑,1,   cl‑PARP↑,1,   PCNA↓,1,   PD-1↓,1,   PDGF↓,1,   PERK↑,2,   p‑PERK↝,1,   PI3K↓,4,   p‑PI3K↓,1,   PKCδ↓,1,   PTEN↓,1,   Rac1↓,1,   RadioS↑,3,   RAS↓,1,   Rho↓,1,   ROS↓,2,   ROS↑,11,   selectivity↑,1,   SIRT1↓,1,   Snail↓,3,   SOD↓,4,   SOD2↓,1,   p‑Src↓,1,   STAT3↓,2,   p‑STAT3↓,1,   p‑STAT6↓,1,   survivin↓,1,   TAZ↓,1,   Telomerase↓,2,   TET1↑,2,   TET2↓,1,   TET3↑,1,   TIMP1↑,1,   TIMP2↑,1,   TNF-α↓,2,   TOP1↓,1,   TOP2↓,1,   Trx1↑,1,   TrxR1↓,1,   TumAuto↑,1,   TumCCA↑,6,   TumCG↓,2,   TumCP↓,5,   tumCV↓,1,   TumMeta↓,1,   Twist↓,2,   Tyro3↓,1,   UPR↑,1,   VEGF↓,4,   VEGFR2↓,2,   Vim↓,3,   Vim↑,1,   VitC↓,1,   VitE↓,1,   Weight∅,1,   Wnt↓,1,   XIAP↓,4,   YAP/TEAD↓,1,   ZO-1↑,1,   β-catenin/ZEB1↓,1,  
Total Targets: 220

Results for Effect on Normal Cells:
AChE↓,1,   ACSL4∅,1,   p‑Akt↓,1,   ALAT↓,1,   AMPK↑,1,   antiOx↓,1,   antiOx↑,4,   AP-1↓,1,   AST↓,1,   ATF4↓,1,   Aβ↓,1,   BAX↓,1,   BBB↑,1,   Bcl-2↑,1,   Beclin-1↓,1,   BioAv↓,3,   BioAv↑,1,   Casp1↓,1,   Casp3↓,2,   Casp9↓,1,   Catalase↑,5,   CHOP↓,1,   COX2↓,2,   COX2∅,1,   Cyt‑c↓,1,   E-cadherin↑,1,   eff↑,3,   ER Stress↓,1,   p‑ERK↓,1,   Ferroptosis↓,1,   GPx↑,2,   GPx4∅,1,   GSH↑,5,   GSR↑,2,   GSTA1↑,1,   GSTs↑,2,   GutMicro↑,1,   Half-Life↝,1,   hepatoP↑,1,   HO-1↑,2,   HO-1∅,1,   IFN-γ↓,1,   IL10↑,1,   IL18↓,1,   IL1β↓,2,   IL2↓,1,   IL6↓,2,   Inflam↓,2,   iNOS↓,1,   IronCh↑,1,   p‑JNK↓,1,   LDHA↑,1,   lipid-P↓,4,   MDA↓,2,   p‑MEK↓,1,   p‑MKK4↑,1,   MMP↑,2,   MMP1↓,1,   neuroP↑,3,   NF-kB↓,1,   NLRP3↓,1,   NO↓,1,   NQO1↑,1,   NRF2↓,1,   NRF2↑,2,   NRF2∅,1,   other↓,1,   p‑p38↓,1,   PGE2↓,1,   PI3K↓,1,   PPARα↑,1,   Raf↓,1,   RenoP↑,1,   ROS↓,11,   ROS↑,1,   SIRT1↑,1,   SOD↑,6,   SREBP1↓,1,   TLR4↓,1,   TNF-α↓,1,   toxicity↓,1,   TXNIP↓,1,   Vim↓,1,   ZO-1↑,1,   p‑γH2AX↓,1,  
Total Targets: 85

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
21 Luteolin
1 Baicalein
1 Radiotherapy/Radiation
1 Chrysin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:118  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page