Database Query Results : Luteolin, , GRP78/BiP

LT, Luteolin: Click to Expand ⟱
Features:
Luteolin a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers.
-MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition.

*** ACTIVE WORK IN PROGRESS**

-Note half-life 2–3 hours
BioAv low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol
Pathways:
- induce ROS production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, LDHA↓, HK2↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


GRP78/BiP, HSPA5: Click to Expand ⟱
Source:
Type:
GRP78 (Pgp, BiP or ERp72) is a central regulator of endoplasmic reticulum (ER) function due to its roles in protein folding and assembly, targeting misfolded protein for degradation, ER Ca(2+)-binding and controlling the activation of trans-membrane ER stress sensors.
-GRP78 protein, a marker for endoplasmic reticulum stress
-GRP78’s role as a master regulator of the unfolded protein response (UPR) and cellular stress responses
The association of P-gp and inhibition of cell death in cancerous cells has also been reported in several studies including in hepatocellular, colorectal, prostate cancer, and gastric cancer. Although counterintuitive due to its prominent role in cancer resistance, P-gp has been linked to favorable prognosis.
ERp72 can promote cancer cell proliferation, migration, and invasion by regulating various signaling pathways, including the PI3K/AKT and MAPK/ERK pathways. Additionally, ERp72 can also inhibit apoptosis (programmed cell death) in cancer cells, which can contribute to tumor progression. Overexpressed in: Breast, lung colorectal, prostrate, ovarian, pancreatic.

-GRP78 is frequently upregulated in a variety of solid tumors and hematological malignancies.
-Overexpression of GRP78 in cancer cells is often regarded as a marker of increased ER stress due to the reduced oxygen and nutrient supply typically encountered in the tumor microenvironment.
-Elevated GRP78 levels can contribute to tumor cell survival by enhancing the adaptive UPR, allowing cancer cells to cope with therapeutic and metabolic stress.



Scientific Papers found: Click to Expand⟱
2923- LT,    Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells
- in-vitro, NA, NA
Apoptosis↑, Luteolin induced apoptotic cell death and activation of caspase-12, -9, and -3
TumCD↑,
Casp12↑,
Casp9↑,
Casp3↑,
ER Stress↑, Luteolin also induced expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP) and glucose-regulated proteins (GRP) 94 and 78, cleavage of ATF6α, and phosphorylation of eIF2α
CHOP↑,
GRP78/BiP↑,
GRP94↑,
cl‑ATF6↑,
p‑eIF2α↑,
MMP↓, rapid reduction of mitochondrial membrane potential by luteolin
JNK↓, luteolin induced activation of mitogen-activated protein kinases such as JNK, p38, and ERK
p38↑,
ERK↑,
Cyt‑c↑, cytochrome c release.

4292- LT,    Luteolin for neurodegenerative diseases: a review
- Review, AD, NA - Review, Park, NA - Review, MS, NA - Review, Stroke, NA
*Inflam↓, luteolin, showing significant anti-inflammatory, antioxidant, and neuroprotective activity.
*antiOx↑,
*neuroP↑,
*BioAv↝, To increase the bioavailability of luteolin, several delivery methods have been developed; the most thoroughly studied include lipid carriers like liposomes and nanoformulations
*BBB↑, luteolin given intraperitoneally (ip) to mice can readily cross the blood-brain barrier (BBB) and enter the brain
*TNF-α↓, nhibiting pro-inflammatory mediators such as cyclooxygenase-2 (COX-2), nitric oxide (NO), TNF-α, IL-β, IL-6, IL-8, IL-31, and IL-33 in several in vitro models of AD
*IL1β↓,
*IL6↓,
*IL8↓,
*IL33↓,
*NF-kB↓, inhibition of the NF-кB pathway
*BACE↓, leads to the inhibition of a downstream target– β-site amyloid precursor protein cleaving enzyme (BACE1), which is a key mediator in forming Aβ fibrils in AD pathology
*ROS↓, anti-oxidant activity mainly by reducing ROS levels and increasing SOD activity in in vitro models of AD
*SOD↑,
*HO-1↑, increase the expression of antioxidant enzymes such as heme oxygenase-1 (HO-1) via the nuclear factor erythroid 2–related factor 2/ antioxidant responsive element (Nrf-2/ARE) complex activation
*NRF2↑,
*Casp3↓, reducing the levels of caspase-3 and − 9 and improving the B-cell lymphoma protein 2/Bcl-2-associated X protein (Bcl-2/Bax) ratio, as it was reported in in vitro models of AD
*Casp9↑,
*Bax:Bcl2↓,
*UPR↑, enhancing the unfolded protein response (UPR) pathway, leading to an increase in endoplasmic reticulum (ER) chaperone GRP78 and a decrease in the expression of UPR-targeted pro-apoptotic genes via the MAPK pathway.
*GRP78/BiP↑,
*Aβ↓, evidence that suggests that luteolin can directly influence the formation of Aβ plaques by selectively inhibiting the activity of N-acetyl-α-galactosaminyltransferase (ppGalNAc-T) isoforms
*GSK‐3β↓, inactivating the glycogen synthase kinase-3 alpha (GSK-3α) isoform, suppressing Aβ and promoting tau disaggregation
*tau↓,
*CREB↑, luteolin promoted phosphorylation and activation of cAMP response element-binding protein (CREB) leading to the increased miR-132 expression, and eventually neurite outgrowth in PC12 cells
*ATP↑, ROS production was decreased by 40%, MMP levels were restored close to control N2a levels (202%), and ATP levels were improved by 444%).
*cognitive↑, protective effect of luteolin against cognitive dysfunction was also reported in the streptozotocin
*BloodF↑, Luteolin increased regional cerebral blood flow values, alleviated the leakage of the lumen of vessels, and protected the integrity of BBB
*BDNF↑, increasing the level of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor (TrkB) expression in the cerebral cortex
*TrkB↑,
*memory↑, luteolin supplementation significantly ameliorated memory and cognitive deficits in 3 × Tg-AD mice.
*PPARγ↑, attenuated mitochondrial dysfunction via peroxisome proliferator-activated receptor gamma (PPARγ) activation.
*eff↑, combination of luteolin with another compound– l-theanine (an amino acid found in tea) also improved AD-like symptoms in the Aβ25–35-treated rats


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   cl‑ATF6↑,1,   Casp12↑,1,   Casp3↑,1,   Casp9↑,1,   CHOP↑,1,   Cyt‑c↑,1,   p‑eIF2α↑,1,   ER Stress↑,1,   ERK↑,1,   GRP78/BiP↑,1,   GRP94↑,1,   JNK↓,1,   MMP↓,1,   p38↑,1,   TumCD↑,1,  
Total Targets: 16

Results for Effect on Normal Cells:
antiOx↑,1,   ATP↑,1,   Aβ↓,1,   BACE↓,1,   Bax:Bcl2↓,1,   BBB↑,1,   BDNF↑,1,   BioAv↝,1,   BloodF↑,1,   Casp3↓,1,   Casp9↑,1,   cognitive↑,1,   CREB↑,1,   eff↑,1,   GRP78/BiP↑,1,   GSK‐3β↓,1,   HO-1↑,1,   IL1β↓,1,   IL33↓,1,   IL6↓,1,   IL8↓,1,   Inflam↓,1,   memory↑,1,   neuroP↑,1,   NF-kB↓,1,   NRF2↑,1,   PPARγ↑,1,   ROS↓,1,   SOD↑,1,   tau↓,1,   TNF-α↓,1,   TrkB↑,1,   UPR↑,1,  
Total Targets: 33

Scientific Paper Hit Count for: GRP78/BiP, HSPA5
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:118  Target#:356  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page