condition found tbRes List
LT, Luteolin: Click to Expand ⟱
Features:
Luteolin a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers.
-MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition.

*** ACTIVE WORK IN PROGRESS**

-Note half-life 2–3 hours
BioAv low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol
Pathways:
- induce ROS production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG, EMT↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, LDHA↓, HK2↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCG, Tumor cell growth: Click to Expand ⟱
Source:
Type:
Normal cells grow and divide in a regulated manner through the cell cycle, which consists of phases (G1, S, G2, and M).
Cancer cells often bypass these regulatory mechanisms, leading to uncontrolled proliferation. This can result from mutations in genes that control the cell cycle, such as oncogenes (which promote cell division) and tumor suppressor genes (which inhibit cell division).


Scientific Papers found: Click to Expand⟱
2918- LT,    Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS
- in-vitro, Melanoma, A375 - in-vivo, Melanoma, NA - in-vitro, Melanoma, SK-MEL-28
TumCG↓, Luteolin inhibited melanoma tumor growth in vitro and in vivo.
ROS↑, Luteolin induced ROS in melanoma cells but ROS was not the cause of growth inhibition.
ECM/TCF↓, luteolin inhibited ECM pathway, oncogenic pathway and modulated immune signaling.

1025- LT,  Api,    Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer
- in-vivo, Lung, NA
TumCG↓,
Apoptosis↑,
PD-L1↓, down-regulated the IFN-γ-induced PD-L1 expression
p‑STAT3↓,

1317- LT,    Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2
- vitro+vivo, Ovarian, PA1
Bcl-2↓,
BAX↑,
Apoptosis↑,
TumCG↓,

2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, Luteolin induced a lethal endoplasmic reticulum stress response and mitochondrial dysfunction in glioblastoma cells by increasing intracellular reactive oxygen species (ROS) levels.
ROS↑,
PERK↑, Luteolin induced expression of ER stress-associated proteins, including phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12.
eIF2α↑,
ATF4↑,
CHOP↑,
Casp12↑,
eff↓, Inhibition of ROS production by anti-oxidant N-acetylcysteine could reverse luteolin-induced ER stress and mitochondrial pathways activation as well as apoptosis.
UPR↑, Researches indicate that abnormalities in ER function can cause ER stress, resulting in unfolded protein response (UPR),
MMP↓, integrity of mitochondrial membranes potential decreased in U87MG cells after treatment of 40 uM luteolin
Cyt‑c↑, release of cytochrome C to cytoplasm was elevated in U251MG cells
Bcl-2↓, significantly decreased the expression of anti-apoptotic protein Bcl-2 and increased the expression of pro-apoptotic protein Bax in U251MG and U87MG glioblastoms cells.
BAX↑,
TumCG↓, Luteolin inhibited tumor growth in a xenograft mouse model
Weight∅, luteolin did not affect body weight, alanine aminotransferase (ALT) or aspartate transaminase (AST)
ALAT∅,
AST∅,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
ALAT∅,1,   Apoptosis↑,2,   AST∅,1,   ATF4↑,1,   BAX↑,2,   Bcl-2↓,2,   Casp12↑,1,   CHOP↑,1,   Cyt‑c↑,1,   ECM/TCF↓,1,   eff↓,1,   eIF2α↑,1,   ER Stress↑,1,   MMP↓,1,   PD-L1↓,1,   PERK↑,1,   ROS↑,2,   p‑STAT3↓,1,   TumCG↓,4,   UPR↑,1,   Weight∅,1,  
Total Targets: 21

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: TumCG, Tumor cell growth
4 Luteolin
1 Apigenin (mainly Parsley)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:118  Target#:323  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page