condition found tbRes List
LT, Luteolin: Click to Expand ⟱
Features:
Luteolin a Flavonoid found in celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers.
-MDR1 expression, MMP-9, IGF-1 and Epithelial to mesenchymal transition.

*** ACTIVE WORK IN PROGRESS**

-Note half-life 2–3 hours
BioAv low, but could be improved with Res, or blend of castor oil, kolliphor and polyethylene glycol
Pathways:
- induce ROS production in cancer cell but a few reports of reduction. Always seems to reduce ROS in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, FAK↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, LDHA↓, HK2↓, GRP78↑,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Hif1a, HIF1α/HIF1a: Click to Expand ⟱
Source:
Type:
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product)
-Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells
-HIF1A induces the expression of vascular endothelial growth factor (VEGF)
-High HIF-1α expression is associated with Poor prognosis
-Low HIF-1α expression is associated with Better prognosis

-Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism.
-Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis

Key mediators of aerobic glycolysis regulated by HIF-1α.
-GLUT-1 → regulation of the flux of glucose into cells.
-HK2 → catalysis of the first step of glucose metabolism.
-PKM2 → regulation of rate-limiting step of glycolysis.
-Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis.
-LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate;

HIF-1α Inhibitors:
-Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate).
-Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions.
-EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity.
-Emodin: reduce HIF-1α expression. (under hypoxia).
-Apigenin: inhibit HIF-1α accumulation.


Scientific Papers found: Click to Expand⟱
2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells.
TumCCA↑,
TumCP↓,
angioG↓,
ER Stress↑, Luteolin induces mitochondrial dysfunction and activates the endoplasmic reticulum stress response in glioblastoma cells, which triggers the generation of intracellular reactive oxygen species (ROS)
mtDam↑,
PERK↑, activate the expression of stress-related proteins by mediating the phosphorylation of PERK, ATF4, eIF2α, and cleaved-caspase 12.
ATF4↑,
eIF2α↑,
cl‑Casp12↑,
EMT↓, Luteolin is known to reverse epithelial-to-mesenchymal transition (EMT), which is associated with the cancer cell progression and metastasis.
E-cadherin↑, upregulating the biomarker E-cadherin expression, followed by a significant downregulation of the N-cadherin and vimentin expression
N-cadherin↓,
Vim↓,
*neuroP↑, Furthermore, luteolin holds potential to improve the spinal damage and brain trauma caused by 1-methyl-4-phenylpyridinium due to its excellent neuroprotective properties.
NF-kB↓, downregulation and suppression of cellular pathways such as nuclear factor kappa B (NF-kB), phosphatidylinositol 3’-kinase (PI3K)/Akt, and X-linked inhibitor of apoptosis protein (XIAP)
PI3K↓,
Akt↑,
XIAP↓,
MMP↓, Furthermore, the membrane action potential of mitochondria depletes in the presence of luteolin, Ca2+ levels and Bax expression upregulate, the levels of caspase-3 and caspase-9 increase, while the downregulation of Bcl-2
Ca+2↑,
BAX↑,
Casp3↑,
Casp9↑,
Bcl-2↓,
Cyt‑c↑, cause the cytosolic release of cytochrome c from mitochondria
IronCh↑, Luteolin serves as a good metal-chelating agent owing to the presence of dihydroxyl substituents on the aromatic ring framework
SOD↓, luteolin further triggered an early phase accumulation of ROS due to the suppression of the activity of cellular superoxide dismutase.
*ROS↓, Luteolin reportedly demonstrated an optimal 43.7% inhibition of the accumulation of ROS, 24.5% decrease in malondialdehyde levels, and 38.7% lowering of lactate dehydrogenase levels at a concentration of 30 µM
*LDHA↑,
*SOD↑, expression of superoxide dismutase ameliorated by 73.7%, while the activity of glutathione improved by 72.3% at the same concentration of luteolin
*GSH↑,
*BioAv↓, Poor bioavailability of luteolin limits its optimal therapeutic efficacy and bioactivity
Telomerase↓, MDA-MB-231 cells with luteolin led to dose dependent arrest of cell cycle in S phase by reducing the levels of telomerase and by inhibiting the phosphorylation of NF-kB inhibitor α along with its target gene c-Myc
cMyc↓,
hTERT↓, These events led to the suppression of the expression of human telomerase reverse transcriptase (hTERT) encoding for the catalytic subunit of telomerase
DR5↑, luteolin upregulated the expression of caspase cascades and death receptors, including DR5
Fas↑, expression of proapoptotic genes such as FAS, FADD, BAX, BAD, BOK, BID, TRADD upregulates, while the anti-apoptotic genes NAIP, BCL-2, and MCL-1 experience downregulation.
FADD↑,
BAD↑,
BOK↑,
BID↑,
NAIP↓,
Mcl-1↓,
CDK2↓, expression of cell cycle regulatory genes CDK2, CDKN2B, CCNE2, CDKN1A, and CDK4 decreased on incubation with luteolin
CDK4↓,
MAPK↓, expression of MAPK1, MAPK3, MAP3K5, MAPK14, PIK3C2A, PIK3C2B, AKT1, AKT2, and ELK1 downregulated
AKT1↓,
Akt2↓,
*Beclin-1↓, luteolin led to downregulation of the expression of hypoxia-inducible factor-1α and autophagy-associated proteins, Beclin 1, and LC3
Hif1a↓,
LC3II↑, LC3-II is upregulated following the luteolin treatment in p53 wild type HepG2 cells i
Beclin-1↑, Luteolin treatment reportedly increased the number of intracellular autophagosomes, as indicated by an increased expression of Beclin 1, and conversion of LC3B-I to LC3B-II in hepatocellular carcinoma SMMC-7721 cells.

2906- LT,    Luteolin, a flavonoid with potentials for cancer prevention and therapy
- Review, Var, NA
*Inflam↓, anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically
AntiCan↑,
antiOx⇅, With low Fe ion concentrations (< 50 μM), luteolin behaves as an antioxidant while high Fe concentrations (>100 μM) induce luteolin's pro-oxidative effect
Apoptosis↑, induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis.
TumCP↓,
TumMeta↓,
angioG↓,
PI3K↓, , luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3′-kinase (PI3K)/Akt, nuclear factor kappa B (NF-κB), and X-linked inhibitor of apoptosis protein (XIAP)
Akt↓,
NF-kB↓,
XIAP↓, luteolin inhibits PKC activity, which results in a decrease in the protein level of XIAP by ubiquitination and proteasomal degradation of this anti-apoptotic protein
P53↑, stimulating apoptosis pathways including those that induce the tumor suppressor p53
*ROS↓, Direct evidence showing luteolin as a ROS scavenger was obtained in cell-free systems
*GSTA1↑, Third, luteolin may exert its antioxidant effect by protecting or enhancing endogenous antioxidants such as glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT)
*GSR↑,
*SOD↑,
*Catalase↑,
*other↓, luteolin may chelate transition metal ions responsible for the generation of ROS and therefore inhibit lipooxygenase reaction, or suppress nontransition metal-dependent oxidation
ROS↑, Luteolin has been shown to induce ROS in untransformed and cancer cells
Dose↝, It is believed that flavonoids could behave as antioxidants or pro-oxidants, depending on the concentration and the source of the free radicals
chemoP↑, may act as a chemopreventive agent to protect cells from various forms of oxidant stresses and thus prevent cancer development
NF-kB↓, We found that luteolin-induced oxidative stress causes suppression of the NF-κB pathway while it triggers JNK activation, which potentiates TNF-induced cytotoxicity in lung cancer cells
JNK↑,
p27↑, Table 1
P21↑,
DR5↑,
Casp↑,
Fas↑,
BAX↑,
MAPK↓,
CDK2↓,
IGF-1↓,
PDGF↓,
EGFR↓,
PKCδ↓,
TOP1↓,
TOP2↓,
Bcl-xL↓,
FASN↓,
VEGF↓,
VEGFR2↓,
MMP9↓,
Hif1a↓,
FAK↓,
MMP1↓,
Twist↓,
ERK↓,
P450↓, Recently, it was determined that luteolin potently inhibits human cytochrome P450 (CYP) 1 family enzymes such as CYP1A1, CYP1A2, and CYP1B1, thereby suppressing the mutagenic activation of carcinogens
CYP1A1↓,
CYP1A2↓,
TumCCA↑, Luteolin is able to arrest the cell cycle during the G1 phase in human gastric and prostate cancer, and in melanoma cells


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   Akt↑,1,   AKT1↓,1,   Akt2↓,1,   angioG↓,2,   AntiCan↑,1,   antiOx⇅,1,   Apoptosis↑,1,   ATF4↑,1,   BAD↑,1,   BAX↑,2,   Bcl-2↓,1,   Bcl-xL↓,1,   Beclin-1↑,1,   BID↑,1,   BOK↑,1,   Ca+2↑,1,   Casp↑,1,   cl‑Casp12↑,1,   Casp3↑,1,   Casp9↑,1,   CDK2↓,2,   CDK4↓,1,   chemoP↑,1,   cMyc↓,1,   CYP1A1↓,1,   CYP1A2↓,1,   Cyt‑c↑,1,   Dose↝,1,   DR5↑,2,   E-cadherin↑,1,   EGFR↓,1,   eIF2α↑,1,   EMT↓,1,   ER Stress↑,1,   ERK↓,1,   FADD↑,1,   FAK↓,1,   Fas↑,2,   FASN↓,1,   Hif1a↓,2,   hTERT↓,1,   IGF-1↓,1,   IronCh↑,1,   JNK↑,1,   LC3II↑,1,   MAPK↓,2,   Mcl-1↓,1,   MMP↓,1,   MMP1↓,1,   MMP9↓,1,   mtDam↑,1,   N-cadherin↓,1,   NAIP↓,1,   NF-kB↓,3,   P21↑,1,   p27↑,1,   P450↓,1,   P53↑,1,   PDGF↓,1,   PERK↑,1,   PI3K↓,2,   PKCδ↓,1,   ROS↑,2,   SOD↓,1,   Telomerase↓,1,   TOP1↓,1,   TOP2↓,1,   TumCCA↑,2,   TumCP↓,2,   TumMeta↓,1,   Twist↓,1,   VEGF↓,1,   VEGFR2↓,1,   Vim↓,1,   XIAP↓,2,  
Total Targets: 76

Results for Effect on Normal Cells:
Beclin-1↓,1,   BioAv↓,1,   Catalase↑,1,   GSH↑,1,   GSR↑,1,   GSTA1↑,1,   Inflam↓,1,   LDHA↑,1,   neuroP↑,1,   other↓,1,   ROS↓,2,   SOD↑,2,  
Total Targets: 12

Scientific Paper Hit Count for: Hif1a, HIF1α/HIF1a
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:118  Target#:143  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page