condition found tbRes List
TQ, Thymoquinone: Click to Expand ⟱
Features: Anti-oxidant, anti-tumor
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin.
Pathways:
-Cell cycle arrest, apoptosis induction, ROS generation in cancer cells
-inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade
-Inhibit angiogenic factors such as VEGF, MMPs
-Inhibit HDACs, UHRF1, and DNMTs

-Note half-life 3-6hrs.
BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ.
DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai)
Pathways:
- usually induce ROS production in Cancer cells, and lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ER Stress, endoplasmic reticulum (ER) stress signaling pathway: Click to Expand ⟱
Source:
Type:
Protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress.
The endoplasmic reticulum (ER) stress signaling pathway plays a crucial role in maintaining cellular homeostasis and responding to various stressors, including those encountered in cancer. When cells experience stress, such as the accumulation of misfolded proteins, they activate a series of signaling pathways collectively known as the unfolded protein response (UPR). The UPR aims to restore normal function by enhancing the protein-folding capacity of the ER, degrading misfolded proteins, and, if the stress is unresolved, triggering apoptosis.
The activation of ER stress pathways can contribute to resistance against chemotherapy and targeted therapies. Cancer cells may utilize the UPR to survive treatment-induced stress, making it challenging to achieve effective therapeutic outcomes.

-ER stress-associated proteins include: phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12



Scientific Papers found: Click to Expand⟱
3417- TQ,    Antiproliferative Effects of Thymoquinone in MCF-7 Breast and HepG2 Liver Cancer Cells: Possible Role of Ceramide and ER Stress
- in-vitro, BC, MCF-7 - in-vitro, Liver, HepG2
TumCP↓, Antiproliferative effect was exerted in cancer cells via TQ incubation at different doses and durations
NF-kB↓, TQ significantly decreased cell viability, S1P, C1P, NF-κB1 mRNA and NF-κB p65 protein levels in cancer cells compared to controls.
cl‑Casp3↑, cleaved caspase-3 levels in cancer cells treated with TQ. GRP78 mRNA and protein levels also increased in cancer cells treated with TQ
GRP78/BiP↑,
ER Stress↑, TQ-induced ceramide accumulation and ER stress in conjunction with decreased S1P, C1P and NF-κB mediated cell survival may promote cancer cell death by triggering apoptosis.
Apoptosis↑,

3416- TQ,    Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway
- in-vitro, Bladder, T24 - in-vitro, Bladder, 253J - in-vitro, Nor, SV-HUC-1
TumCP↓, TQ has a significant cytotoxicity on bladder cancer cells and can inhibit their proliferation and induce apoptosis.
Apoptosis↑,
ER Stress↑, The protein changes of Bcl-2, Bax, cytochrome c and endoplasmic reticulum stress-related proteins (GRP78, CHOP, and caspase-12) revealed that the anticancer effect of TQ was associated with mitochondrial dysfunction and the endoplasmic reticulum stre
cl‑Casp3↑, TQ increased the cleaved subunits of caspase-3, caspase-8, caspase-7 and PARP (Fig. 2B) and increased caspase-3 activity (Fig. 2C) in a dose-dependent manner.
cl‑Casp8↑,
cl‑Casp7↑,
cl‑PARP↑,
Cyt‑c↑, can increase the release of cytochrome c
PERK↑, TQ increased the expression of PERK, IRE1 and ATF6 and the expression of downstream molecules such as p-eIF2a and ATF4 in a dose-dependent manner
IRE1↑,
ATF6↑,
p‑eIF2α↑,
ATF4↑,
GRP78/BiP↑, GRP78, IRE1, ATF6, ATF4 and CHOP was significantly increased after TQ treatment
CHOP↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,2,   ATF4↑,1,   ATF6↑,1,   cl‑Casp3↑,2,   cl‑Casp7↑,1,   cl‑Casp8↑,1,   CHOP↑,1,   Cyt‑c↑,1,   p‑eIF2α↑,1,   ER Stress↑,2,   GRP78/BiP↑,2,   IRE1↑,1,   NF-kB↓,1,   cl‑PARP↑,1,   PERK↑,1,   TumCP↓,2,  
Total Targets: 16

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: ER Stress, endoplasmic reticulum (ER) stress signaling pathway
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:162  Target#:103  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page