condition found tbRes List
TQ, Thymoquinone: Click to Expand ⟱
Features: Anti-oxidant, anti-tumor
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin.
Pathways:
-Cell cycle arrest, apoptosis induction, ROS generation in cancer cells
-inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade
-Inhibit angiogenic factors such as VEGF, MMPs
-Inhibit HDACs, UHRF1, and DNMTs

-Note half-life 3-6hrs.
BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ.
DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai)
Pathways:
- usually induce ROS production in Cancer cells, and lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Glycolysis, Glycolysis: Click to Expand ⟱
Source:
Type:
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP.
In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect.
Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses.

Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis.

Pathways:
-GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO

Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/
Alkaloids:
-Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine

Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol.

Non-flavonoid phenolic compounds:
Curcumin, Resveratrol, Gossypol, Tannic acid.

Terpenoids:
-Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin.

Quinones:
-Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin

Others:
-Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene.


Scientific Papers found: Click to Expand⟱
3431- TQ,    PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Glycolysis↓, we provide evidence that thymoquinone inhibits glycolytic metabolism (Warburg effect) in colorectal cancer cell lines.
Warburg↓,
HK2↓, was due, at least in part, to the inhibition of the rate-limiting glycolytic enzyme, Hexokinase 2 (HK2),
ATP↓, such reduction in glucose fermentation capacity also led to a significant reduction in overall ATP production as well as maintaining the redox state (NADPH production) of these cells
NADPH↓, showed a significant reduction in glucose fermentation, ATP and NADPH production rates
PI3K↓, reduction in HK2 levels upon TQ treatment coincided with significant inhibition in PI3K-AKT activation
Akt↓,
TumCP↓, Thymoquinone Inhibits Cell Migration and Invasion via Modulating Glucose Metabolic Reprogramming
E-cadherin↑, TQ was able to induce E-cadherin while inhibiting N-cadherin expression
N-cadherin↓,
Hif1a↓, TQ is reported to induce cell death in renal cell carcinoma [81] and pancreatic cancers [82] via inhibiting HIF1α and pyruvate kinase M2 (PKM2)-mediated glycolysis
PKM2↓,
GlucoseCon↓, TQ treatment inhibited the glucose uptake and subsequent lactate production in HCT116 and SW480 cells
lactateProd↓,
EMT↓, TQ inhibits cell proliferation, clonogenicity and epithelial-mesenchymal transition (EMT) in CRC cells (HCT116 and SW480)

2125- TQ,    Thymoquinone Selectively Kills Hypoxic Renal Cancer Cells by Suppressing HIF-1α-Mediated Glycolysis
- in-vitro, RCC, RCC4 - in-vitro, RCC, Caki-1
Hif1a↓, TQ reduced HIF-1α protein levels in renal cancer cells. In addition, decreased HIF-1α levels in both cytoplasm and nucleus after treatment with 10 μM of TQ were observed in Caki-1 cells
eff↝, suggesting that suppression of HIF-1α by TQ may be connected to Hsp90-mediated HIF-1α stabilization
uPAR↓, significantly downregulated the hypoxia-induced tumor promoting HIF-1α target genes, such as FN1, LOXL2, uPAR, VEGF, CA-IX, PDK1, GLUT1, and LDHA, in TQ-treated Caki-1
VEGF↓,
CAIX↓,
PDK1↓,
GLUT1↓,
LDHA↓,
Glycolysis↓, we found that TQ significantly increases glucose levels in hypoxic Caki-1 and A498 cultured medium, indicating that hypoxia-induced anaerobic glycolysis is significantly suppressed by TQ treatment
e-lactateProd↓, Consistent with suppression of hypoxic glycolysis by TQ treatment, increased extracellular lactate levels under hypoxia were decreased in TQ-treated Caki-1 and A498 renal cancer cells
i-ATP↓, intracellular ATP levels were significantly decreased in TQ-treated Caki-1 and A498 cells under hypoxia


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   ATP↓,1,   i-ATP↓,1,   CAIX↓,1,   E-cadherin↑,1,   eff↝,1,   EMT↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,2,   Hif1a↓,2,   HK2↓,1,   lactateProd↓,1,   e-lactateProd↓,1,   LDHA↓,1,   N-cadherin↓,1,   NADPH↓,1,   PDK1↓,1,   PI3K↓,1,   PKM2↓,1,   TumCP↓,1,   uPAR↓,1,   VEGF↓,1,   Warburg↓,1,  
Total Targets: 24

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: Glycolysis, Glycolysis
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:162  Target#:129  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page