condition found tbRes List
TQ, Thymoquinone: Click to Expand ⟱
Features: Anti-oxidant, anti-tumor
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin.
Pathways:
-Cell cycle arrest, apoptosis induction, ROS generation in cancer cells
-inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade
-Inhibit angiogenic factors such as VEGF, MMPs
-Inhibit HDACs, UHRF1, and DNMTs

-Note half-life 3-6hrs.
BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ.
DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai)
Pathways:
- usually induce ROS production in Cancer cells, and lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCMig, Tumor cell migration: Click to Expand ⟱
Source:
Type:
Tumor cell migration is a critical process in cancer progression and metastasis, which is the spread of cancer cells from the primary tumor to distant sites in the body.


Scientific Papers found: Click to Expand⟱
1920- JG,  TQ,  Plum,    Natural quinones induce ROS-mediated apoptosis and inhibit cell migration in PANC-1 human pancreatic cancer cell line
- in-vitro, PC, PANC1
ROS↑, thymoquinone, plumbagin and juglone were evaluated for their influence on reactive oxygen species (ROS) generation through 2,7-dichlorofluorescein diacetate (DCFDA) staining and they dramatically increased the intracellular ROS level in treated PANC-
TumCMig↓, inhibited PANC-1 cell migration
MMP9↓, reduced expression of matrix metalloproteinase-9 (MMP-9) in juglone-treated cells

3411- TQ,    Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone
- Review, Var, NA
p‑STAT3↓, Thymoquinone inhibited the JAK2-mediated phosphorylation of STAT3 on the 727th serine residue in SK-MEL-28 cells
cycD1↓, levels of cyclin D1, D2, and D3 were reported to be reduced in STAT3-depleted SK-MEL-28 cells
JAK2↓, The JAK2/STAT3 pathway is inactivated by thymoquinone in B16-F10 melanoma cells
β-catenin/ZEB1↓, Levels of β-catenin and Wnt/β-catenin target genes, such as c-Myc, matrix metalloproteinase-7, and Met, were found to be reduced in thymoquinone-treated bladder cancer cells.
cMyc↓,
MMP7↓,
MET↓,
p‑Akt↓, Thymoquinone dose-dependently reduced the levels of p-AKT (threonine-308), p-AKT (serine-473), p-mTOR1, and p-mTOR2 in gastric cancer cells.
p‑mTOR↓,
CXCR4↓, Thymoquinone decreased the surface expression of CXCR4 on multiple myeloma cells
Bcl-2↓, Thymoquinone time-dependently decreased BCL-2 levels and simultaneously enhanced BAX levels
BAX↑,
ROS↑, Thymoquinone-mediated ROS accumulation triggered conformational changes in BAX that sequentially resulted in the activation of the mitochondrial apoptotic pathway
Cyt‑c↑, Thymoquinone effectively increased the release of cytochrome c into the cytosol
Twist↓, Thymoquinone downregulated TWIST1 and ZEB1 and simultaneously upregulated E-cadherin in SiHa and CaSki cell lines [82].
Zeb1↓,
E-cadherin↑,
p‑p38↑, Thymoquinone-induced ROS enhanced the phosphorylation of p38-MAPK in MCF-7 cells.
p‑MAPK↑,
ERK↑, The thymoquinone-induced activation of ERK1/2
eff↑, FR180204 (ERK inhibitor) significantly reduced the viability of thymoquinone and docetaxel-treated cancer cells [
ERK↓, Thymoquinone inhibited the proliferation, migration, and invasion of A549 cells by inactivating the ERK1/2 signaling cascade
TumCP↓,
TumCMig↓,
TumCI↓,

3571- TQ,    The Role of Thymoquinone in Inflammatory Response in Chronic Diseases
- Review, Var, NA - Review, Stroke, NA
*BioAv↓, TQ has poor bioavailability and is hydrophobic, prohibiting clinical trials with TQ alone.
*BioAv↑, TQ nanoparticle formulation shows better bioavailability than free TQ,
*Inflam↓, anti-inflammatory effects of TQ involve multiple complex signaling pathways as well as molecular mechanisms
*antiOx↑, antioxidant activity from the inhibition of oxidative stress
*ROS↓,
*GSH↑, GSH prevented ROS-mediated oxidative stress damage
*GSTs↑, TQ was found to exhibit antioxidant properties by increasing the levels of GSH and glutathione-S-transferase enzyme alpha-3 (GSTA3)
*MPO↓, TQ significantly reduced the disease activity index (DAI) and myeloperoxidase (MPO) activity, protecting the internal microenvironment of the colon.
*NF-kB↓, TQ reduced NF-κB signaling gene expression while alleviating the increase of COX-2 in skin cells induced by 12-O-tetradecanoylphorbol-13-acetate
*COX2↓,
*IL1β↓, reduced the expression of inflammatory factors such as IL-1β, TNF-α, IFN-γ, and IL-6
*TNF-α↓,
*IFN-γ↓,
*IL6↓,
*cardioP↑, TQ may exhibit substantial effects in the control of inflammation in CVD
*lipid-P↓, TQ reduces lipid accumulation and enhances antioxidant capacity and renal function.
*TAC↑,
*RenoP↑,
Apoptosis↑, Breast cancer TQ induces apoptosis and cell cycle arrest; reduces cancer cell proliferation, colony formation, and migration;
TumCCA↑,
TumCP↓,
TumCMig↓,
angioG↓, Colorectal Cancer (CRC) TQ inhibits the angiogenesis
TNF-α↓, Lung cancer TQ inhibits tumor cell proliferation by causing lung cancer cell apoptosis to significantly arrest the S phase cell cycle and significantly reduce the activity of TNF-a and NF-κB
NF-kB↓,
ROS↑, Pancreatic cancer TQ significantly increases the level of ROS production in human pancreatic cancer cells
EMT↓, TQ initiates the miR-877-5p and PD-L1 signaling pathways, inhibiting the migration and EMT of bladder cancer cells.
*Aβ↓, TQ significantly reduced the expression of Aβ, phosphorylated-tau, and BACE-1 proteins.
*p‑tau↓,
*BACE↓,
*TLR2↓, Parkinson’s disease (PD) TQ inhibits activation of the NF-κB pathway. TQ reduces the expression of TLR-2, TLR-4, MyD88, TNF-α, IL-1β, IFN-β, IRF-3, and NF-κB.
*TLR4↓,
*MyD88↓,
*IRF3↓,
*eff↑, TQ pretreatment produced a dose-dependent reduction in the MI area and significantly reduced the elevation of serum cardiac markers caused by ISO.
eff↑, Curcumin and TQ induced apoptosis and cell cycle arrest and reduced cancer cell proliferation, colony formation, and migration in breast cancer cells
DNAdam↑, nanomedicine with TQ that induced DNA damage and apoptosis, inhibited cell proliferation, and prevented cell cycle progression
*iNOS↓, TQ significantly reduced the expression of COX-2 and inducible nitric oxide synthase (iNOS)

3421- TQ,    Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer
- Analysis, Nor, NA - in-vivo, Nor, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, HaCaT
HDAC↓, The in silico findings were corroborated with an in vitro analysis, demonstrating the efficient role of TQ in the attenuation of global HDAC activity.
P21↑, reactivation of HDAC target genes (p21 and Maspin), induction of the pro-apoptotic gene Bax, down regulation of the anti-apoptotic gene Bcl-2 and arrest of the cell cycle at the G2/M phase.
Maspin↑,
BAX↑,
B2M↓,
TumCCA↑,
selectivity↑, higher cytotoxicity of TQ towards MCF-7 breast cancer cells in comparison to normal cells indicates the potential of TQ to be an anticancer drug.
*toxicity↓, Fortunately, in the case of normal cells, TQ elicits no lethal effect as that of TSA and almost all cells remained viable even at 100 μM TQ. above findings it is evident that TQ is non-toxic to normal cells
TumCMig↓, TQ inhibits migration and proliferation of breast cancer cells.
TumCP↓,

3418- TQ,    Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome
- in-vitro, Melanoma, A375 - in-vivo, NA, NA
TumMeta↓, Thymoquinone causes inhibition of metastasis in vivo
TumCMig↓, Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.
NLRP3↓,
Casp1↓, Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18.
IL1β↓,
IL18↓,
ROS↓, Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome.
NF-kB↓, as well as inhibition of NF-κB, and hence suppressing growth and migration of melanoma cells.

962- TQ,    Thymoquinone affects hypoxia-inducible factor-1α expression in pancreatic cancer cells via HSP90 and PI3K/AKT/mTOR pathways
- in-vitro, PC, PANC1 - in-vitro, Nor, hTERT-HPNE - in-vitro, PC, AsPC-1 - in-vitro, PC, Bxpc-3
TumCMig↓,
TumCI↓,
Apoptosis↑, no significant effects on hTERT-HPNE cells (normal cells) ****
Hif1a↓, TQ significantly reduced the mRNA and protein expression levels of HIF-1α in PANC-1, AsPC-1, and BxPC-3 cells.
PI3k/Akt/mTOR↓,
TumCCA↑, possible mechanism of TQ's influence on PC cell cycle was that TQ inhibited the proliferation of cancer cells (reducing the proportion of S phase) and damaged the DNA of cancer cells (increasing the proportion of G2/M phase). No effect on normal cell
*toxicity↓, TQ had no significant effect on the viability of hTERT-HPNE cells
*TumCI∅, no significant difference in the invasion ability of the hTERT-HPNE cells
*TumCMig∅, no significant effect on the migration and invasion of normal pancreatic ductal epithelial cells.

2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells
ChemoSen↑,
BioAv↑, TQ adds another advantage in overcoming blood-brain barrier
PTEN↑, TQ upregulates PTEN signaling [72, 73], interferes with PI3K/Akt signaling and promotes G(1) arrest, downregulates PI3K/Akt
PI3K↓,
Akt↓,
TumCCA↓,
NF-kB↓, and NF-κB and their regulated gene products, such as p-AKT, p65, XIAP, Bcl-2, COX-2, and VEGF, and attenuates mTOR activity
p‑Akt↓,
p65↓,
XIAP↓,
Bcl-2↓,
COX2↓,
VEGF↓,
mTOR↓,
RAS↓, Studies in colorectal cancer have demonstrated that TQ inhibits the Ras/Raf/MEK/ERK signaling
Raf↓,
MEK↓,
ERK↓,
MMP2↓, Multiple studies have reported that TQ downregulates FAC and reduces the secretion of MMP-2 and MMP-9 and thereby reduces GBM cells migration, adhesion, and invasion
MMP9↓,
TumCMig↓,
TumCI↓,
Casp↑, caspase activation and PARP cleavage
cl‑PARP↑,
ROS⇅, TQ is hypothesized to act as an antoxidant at lower concentrations and a prooxidant at higher concentrations depending on its environment [89]
ROS↑, In tumor cells specifically, TQ generates ROS production that leads to reduced expression of prosurvival genes, loss of mitochondrial potential,
MMP↓,
eff↑, elevated level of ROS generation and simultaneous DNA damage when treated with a combination of TQ and artemisinin
Telomerase↓, inhibition of telomerase by TQ through the formation of G-quadruplex DNA stabilizer, subsequently leads to rapid DNA damage which can eventually induce apoptosis in cancer cells specifically
DNAdam↑,
Apoptosis↑,
STAT3↓, TQ has shown to suppress STAT3 in myeloma, gastric, and colon cancer [86, 171, 172]
RadioS↑, TQ might enhance radiation therapeutic benefit by enhancing the cytotoxic efficacy of radiation through modulation of cell cycle and apoptosis [31]


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,2,   angioG↓,1,   Apoptosis↑,3,   B2M↓,1,   BAX↑,2,   Bcl-2↓,2,   BioAv↑,1,   Casp↑,1,   Casp1↓,1,   chemoP↑,1,   ChemoSen↑,1,   cMyc↓,1,   COX2↓,1,   CXCR4↓,1,   cycD1↓,1,   Cyt‑c↑,1,   DNAdam↑,2,   E-cadherin↑,1,   eff↑,3,   EMT↓,1,   ERK↓,2,   ERK↑,1,   HDAC↓,1,   Hif1a↓,1,   IL18↓,1,   IL1β↓,1,   JAK2↓,1,   p‑MAPK↑,1,   Maspin↑,1,   MEK↓,1,   MET↓,1,   MMP↓,1,   MMP2↓,1,   MMP7↓,1,   MMP9↓,2,   mTOR↓,1,   p‑mTOR↓,1,   NF-kB↓,3,   NLRP3↓,1,   P21↑,1,   p‑p38↑,1,   p65↓,1,   cl‑PARP↑,1,   PI3K↓,1,   PI3k/Akt/mTOR↓,1,   PTEN↑,1,   RadioS↑,1,   Raf↓,1,   RAS↓,1,   ROS↓,1,   ROS↑,4,   ROS⇅,1,   selectivity↑,1,   STAT3↓,1,   p‑STAT3↓,1,   Telomerase↓,1,   TNF-α↓,1,   TumCCA↓,1,   TumCCA↑,3,   TumCI↓,3,   TumCMig↓,7,   TumCP↓,3,   TumMeta↓,1,   Twist↓,1,   VEGF↓,1,   XIAP↓,1,   Zeb1↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 69

Results for Effect on Normal Cells:
antiOx↑,1,   Aβ↓,1,   BACE↓,1,   BioAv↓,1,   BioAv↑,1,   cardioP↑,1,   COX2↓,1,   eff↑,1,   GSH↑,1,   GSTs↑,1,   IFN-γ↓,1,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   iNOS↓,1,   IRF3↓,1,   lipid-P↓,1,   MPO↓,1,   MyD88↓,1,   NF-kB↓,1,   RenoP↑,1,   ROS↓,1,   TAC↑,1,   p‑tau↓,1,   TLR2↓,1,   TLR4↓,1,   TNF-α↓,1,   toxicity↓,2,   TumCI∅,1,   TumCMig∅,1,  
Total Targets: 30

Scientific Paper Hit Count for: TumCMig, Tumor cell migration
7 Thymoquinone
1 Juglone
1 Plumbagin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:162  Target#:326  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page