condition found tbRes List
TQ, Thymoquinone: Click to Expand ⟱
Features: Anti-oxidant, anti-tumor
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin.
Pathways:
-Cell cycle arrest, apoptosis induction, ROS generation in cancer cells
-inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade
-Inhibit angiogenic factors such as VEGF, MMPs
-Inhibit HDACs, UHRF1, and DNMTs

-Note half-life 3-6hrs.
BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ.
DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai)
Pathways:
- usually induce ROS production in Cancer cells, and lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Warburg, Warburg Effect: Click to Expand ⟱
Source:
Type: effect
The Warburg effect is a metabolic phenomenon in which cancer cells preferentially use glycolysis for energy production, even in the presence of oxygen. Targeting the pathways involved in the Warburg effect is a promising strategy for cancer treatment.
The Warburg effect is always accompanied by a hypoxic condition, and activation of HIF-1a contributes to the Warburg effect through coordinated upregulation of glycolysis and downregulation of oxidative phosphorylation.
Warburg effect (GLUT1, LDHA, HK2, and PKM2).
Here are some of the key pathways and potential targets:

Note: use database Filter to find inhibitors: Ex pick target HIF1α, and effect direction ↓

1.Glycolysis Inhibitors:(2-DG, 3-BP)
-HK2 Inhibitors: such as 2-deoxyglucose, can reduce glycolysis
-PFK1 Inhibitors: such as PFK-158, can reduce glycolysis
-PFKFB Inhibitors:
-PKM2 Inhibitors: (Shikonin)
-Can reduce glycolysis
-LDH Inhibitors: (Gossypol, FX11)
-Reducing the conversion of pyruvate to lactate.
-Inhibiting the production of ATP and NADH.
-GLUT1 Inhibitors: (phloretin, WZB117)
-A key transporter involved in glucose uptake.
-GLUT3 Inhibitors:
-PDK1 Inhibitors: (dichloroacetate)
- A key enzyme involved in the regulation of glycolysis.

2.Gluconeogenesis pathway:
-FBP1 Activators: can increase gluconeogenesis
-PEPCK1 Inhibitors: can reduce gluconeogenesis

3.Pentose phosphate pathway:
-G6PD Inhibitors: can reduce the pentose phosphate pathway

4.Mitochondrial metabolism:
-MPC1 Inhibitors: can reduce mitochondrial metabolism and inhibit cancer
-SDH Inhibitors: can reduce mitochondrial metabolism and inhibit cancer cell growth.

5.Hypoxia-inducible factor 1 alpha (HIF1α) pathway:
-HIF1α inhibitors: (PX-478,Shikonin)
-Reduce expression of glycolytic genes and inhibit cancer cell growth.

6.AMP-activated protein kinase (AMPK) pathway:
-AMPK activators: (metformin,AICAR,berberine)
-Can increase AMPK activity and inhibit cancer cell growth.

7.mTOR pathway:
-mTOR inhibitors:(rapamycin,everolimus)
-Can reduce mTOR activity and inhibit cancer cell growth.


Scientific Papers found: Click to Expand⟱
3431- TQ,    PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Glycolysis↓, we provide evidence that thymoquinone inhibits glycolytic metabolism (Warburg effect) in colorectal cancer cell lines.
Warburg↓,
HK2↓, was due, at least in part, to the inhibition of the rate-limiting glycolytic enzyme, Hexokinase 2 (HK2),
ATP↓, such reduction in glucose fermentation capacity also led to a significant reduction in overall ATP production as well as maintaining the redox state (NADPH production) of these cells
NADPH↓, showed a significant reduction in glucose fermentation, ATP and NADPH production rates
PI3K↓, reduction in HK2 levels upon TQ treatment coincided with significant inhibition in PI3K-AKT activation
Akt↓,
TumCP↓, Thymoquinone Inhibits Cell Migration and Invasion via Modulating Glucose Metabolic Reprogramming
E-cadherin↑, TQ was able to induce E-cadherin while inhibiting N-cadherin expression
N-cadherin↓,
Hif1a↓, TQ is reported to induce cell death in renal cell carcinoma [81] and pancreatic cancers [82] via inhibiting HIF1α and pyruvate kinase M2 (PKM2)-mediated glycolysis
PKM2↓,
GlucoseCon↓, TQ treatment inhibited the glucose uptake and subsequent lactate production in HCT116 and SW480 cells
lactateProd↓,
EMT↓, TQ inhibits cell proliferation, clonogenicity and epithelial-mesenchymal transition (EMT) in CRC cells (HCT116 and SW480)

3425- TQ,    Advances in research on the relationship between thymoquinone and pancreatic cancer
Apoptosis↑, TQ can inhibit cell proliferation, promote cancer cell apoptosis, inhibit cell invasion and metastasis, enhance chemotherapeutic sensitivity, inhibit angiogenesis, and exert anti-inflammatory effects.
TumCP↓,
TumCI↓,
TumMeta↓,
ChemoSen↑,
angioG↓,
Inflam↓,
NF-kB↓, These anticancer effects predominantly involve the nuclear factor (NF)-κB, phosphoinositide 3 kinase (PI3K)/Akt, Notch, transforming growth factor (TGF)-β, c-Jun N-terminal kinase (JNK)
PI3K↓,
Akt↓,
TGF-β↓,
Jun↓,
p38↑, and p38 mitogen-activated protein kinase (MAPK) signaling pathways as well as the regulation of the cell cycle, matrix metallopeptidase (MMP)-9 expression, and pyruvate kinase isozyme type M2 (PKM2) activity.
MAPK↑, activation of the JNK and p38 MAPK
MMP9↓,
PKM2↓, decrease in PKM2 activity
ROS↑, ROS-mediated activation
JNK↑, activation of the JNK and p38 MAPK
MUC4↓, downregulation of MUC4;
TGF-β↑, TQ led to the activation of the TGF-β pathway and subsequent downregulation of MUC4
Dose↝, Q acts as an antioxidant (free radical scavenger) at low concentrations and as a pro-oxidant at high concentrations.
FAK↓, TQ can inhibit several key molecules such as FAK, Akt, NF-κB, and MMP-9 and that these molecules interact in a cascade to affect the metastasis of pancreatic cancer
NOTCH↓, TQ involved in increasing chemosensitivity consist of blocking the Notch1/PTEN, PI3K/Akt/mTOR, and NF-κB signaling pathways, reducing PKM2 expression, and inhibiting the Warburg effect.
PTEN↑, it also restored the PTEN protein that had been inhibited by GEM
mTOR↓,
Warburg↓, reducing PKM2 expression, and inhibiting the Warburg effect.
XIAP↓,
COX2↓,
Casp9↑,
Ki-67↓,
CD34↓,
VEGF↓,
MCP1↓,
survivin↓,
Cyt‑c↑,
Casp3↑,
H4↑,
HDAC↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   angioG↓,1,   Apoptosis↑,1,   ATP↓,1,   Casp3↑,1,   Casp9↑,1,   CD34↓,1,   ChemoSen↑,1,   COX2↓,1,   Cyt‑c↑,1,   Dose↝,1,   E-cadherin↑,1,   EMT↓,1,   FAK↓,1,   GlucoseCon↓,1,   Glycolysis↓,1,   H4↑,1,   HDAC↓,1,   Hif1a↓,1,   HK2↓,1,   Inflam↓,1,   JNK↑,1,   Jun↓,1,   Ki-67↓,1,   lactateProd↓,1,   MAPK↑,1,   MCP1↓,1,   MMP9↓,1,   mTOR↓,1,   MUC4↓,1,   N-cadherin↓,1,   NADPH↓,1,   NF-kB↓,1,   NOTCH↓,1,   p38↑,1,   PI3K↓,2,   PKM2↓,2,   PTEN↑,1,   ROS↑,1,   survivin↓,1,   TGF-β↓,1,   TGF-β↑,1,   TumCI↓,1,   TumCP↓,2,   TumMeta↓,1,   VEGF↓,1,   Warburg↓,2,   XIAP↓,1,  
Total Targets: 48

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: Warburg, Warburg Effect
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:162  Target#:947  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page