condition found tbRes List
TQ, Thymoquinone: Click to Expand ⟱
Features: Anti-oxidant, anti-tumor
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin.
Pathways:
-Cell cycle arrest, apoptosis induction, ROS generation in cancer cells
-inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade
-Inhibit angiogenic factors such as VEGF, MMPs
-Inhibit HDACs, UHRF1, and DNMTs

-Note half-life 3-6hrs.
BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ.
DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai)
Pathways:
- usually induce ROS production in Cancer cells, and lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, FAK↓, NF-κB↓, CXCR4, TGF-β↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CXCR4, Chemokine Receptor Type 4: Click to Expand ⟱
Source:
Type:
Chemokine Receptor Type 4 (CXCR4) is a G protein-coupled receptor that plays a significant role in various physiological processes, including immune responses, hematopoiesis, and organ development. It is also implicated in cancer biology, where it has been associated with tumor progression, metastasis, and the tumor microenvironment.
CXCR4 is often overexpressed in various types of cancers, including breast, lung, prostate, and pancreatic cancers. Its activation can promote tumor cell proliferation and survival.
-CXCR4 proteins associated with metastasis


Scientific Papers found: Click to Expand⟱
3411- TQ,    Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone
- Review, Var, NA
p‑STAT3↓, Thymoquinone inhibited the JAK2-mediated phosphorylation of STAT3 on the 727th serine residue in SK-MEL-28 cells
cycD1↓, levels of cyclin D1, D2, and D3 were reported to be reduced in STAT3-depleted SK-MEL-28 cells
JAK2↓, The JAK2/STAT3 pathway is inactivated by thymoquinone in B16-F10 melanoma cells
β-catenin/ZEB1↓, Levels of β-catenin and Wnt/β-catenin target genes, such as c-Myc, matrix metalloproteinase-7, and Met, were found to be reduced in thymoquinone-treated bladder cancer cells.
cMyc↓,
MMP7↓,
MET↓,
p‑Akt↓, Thymoquinone dose-dependently reduced the levels of p-AKT (threonine-308), p-AKT (serine-473), p-mTOR1, and p-mTOR2 in gastric cancer cells.
p‑mTOR↓,
CXCR4↓, Thymoquinone decreased the surface expression of CXCR4 on multiple myeloma cells
Bcl-2↓, Thymoquinone time-dependently decreased BCL-2 levels and simultaneously enhanced BAX levels
BAX↑,
ROS↑, Thymoquinone-mediated ROS accumulation triggered conformational changes in BAX that sequentially resulted in the activation of the mitochondrial apoptotic pathway
Cyt‑c↑, Thymoquinone effectively increased the release of cytochrome c into the cytosol
Twist↓, Thymoquinone downregulated TWIST1 and ZEB1 and simultaneously upregulated E-cadherin in SiHa and CaSki cell lines [82].
Zeb1↓,
E-cadherin↑,
p‑p38↑, Thymoquinone-induced ROS enhanced the phosphorylation of p38-MAPK in MCF-7 cells.
p‑MAPK↑,
ERK↑, The thymoquinone-induced activation of ERK1/2
eff↑, FR180204 (ERK inhibitor) significantly reduced the viability of thymoquinone and docetaxel-treated cancer cells [
ERK↓, Thymoquinone inhibited the proliferation, migration, and invasion of A549 cells by inactivating the ERK1/2 signaling cascade
TumCP↓,
TumCMig↓,
TumCI↓,

3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, It appears that the cellular and/or physiological context(s) determines whether TQ acts as a pro-oxidant or an anti-ox- idant in vivo
Fas↑, Figure 2, cell death
DR5↑,
TRAIL↑,
Casp3↑,
Casp8↑,
Casp9↑,
P53↑,
mTOR↓,
Bcl-2↓,
BID↓,
CXCR4↓,
JNK↑,
p38↑,
MAPK↑,
LC3II↑,
ATG7↑,
Beclin-1↑,
AMPK↑,
PPARγ↑, cell survival
eIF2α↓,
P70S6K↓,
VEGF↓,
ERK↓,
NF-kB↓,
XIAP↓,
survivin↓,
p65↓,
DLC1↑, epigenetic
FOXO↑,
TET2↑,
CYP1B1↑,
UHRF1↓,
DNMT1↓,
HDAC1↓,
IL2↑, inflammation
IL1↓,
IL6↓,
IL10↓,
IL12↓,
TNF-α↓,
iNOS↓,
COX2↓,
5LO↓,
AP-1↓,
PI3K↓, invastion
Akt↓,
cMET↓,
VEGFR2↓,
CXCL1↓,
ITGA5↓,
Wnt↓,
β-catenin/ZEB1↓,
GSK‐3β↓,
Myc↓,
cycD1↓,
N-cadherin↓,
Snail↓,
Slug↓,
Vim↓,
Twist↓,
Zeb1↓,
MMP2↓,
MMP7↓,
MMP9↓,
JAK2↓, cell proliferiation
STAT3↓,
NOTCH↓,
cycA1↓,
CDK2↓,
CDK4↓,
CDK6↓,
CDC2↓,
CDC25↓,
Mcl-1↓,
E2Fs↓,
p16↑,
p27↑,
P21↑,
ChemoSen↑, Such chemo-potentiating effects of TQ in different cancer cells have been observed with 5-fluorouracil in gastric cancer and colorectal cancer models

3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, TQ selectively inhibits the cancer cells’ proliferation in leukemia [9], breast [10], lungs [11], larynx [12], colon [13,14], and osteosarcoma [15]. However, there is no effect against healthy cells
P53↑, It also re-expressed tumor suppressor genes (TSG), such as p53 and Phosphatase and tensin homolog (PTEN) in lung cancer
PTEN↑,
NF-kB↓, antitumor properties by regulating different targets, such as nuclear factor kappa B (NF-Kb), peroxisome proliferator-activated receptor-γ (PPARγ), and c-Myc [1], which resulted in caspases protein activation
PPARγ↓,
cMyc↓,
Casp↑,
*BioAv↓, Due to hydrophobicity, there are limitations in the bioavailability and drug formation of TQ.
BioAv↝, TQ is sensitive to light; a short period of exposure results in severe degradation, regardless of the solution’s acidity and solvent type [27]. It is also unstable in alkaline solutions because TQ’s stability decreases with rising pH
eff↑, Encapsulating TQ with CS improves the uptake and bioavailability of TQ but has low encapsulation efficiency (35%)
survivin↓, TQ showed antiproliferative and pro-apoptotic potency on breast cancer through the suppression of anti-apoptotic proteins, such as survivin, Bcl-xL, and Bcl-2
Bcl-xL↓,
Bcl-2↓,
Akt↓, treating doxorubicin-resistant MCF-7/DOX cells with TQ inhibited Akt and Bcl2 phosphorylation and increased the expression of PTEN and apoptotic regulators such as Bax, cleaved PARP, cleaved caspases, p53, and p21 [
BAX↑,
cl‑PARP↑,
CXCR4↓, inhibited metastasis with significant inhibition of chemokine receptor Type 4 (CXCR4), which is considered a poor prognosis indicator, matrix metallopeptidase 9 (MMP9), vascular endothelial growth factor Receptor 2 (VEGFR2), Ki67, and COX2
MMP9↓,
VEGFR2↓,
Ki-67↓,
COX2↓,
JAK2↓, TQ at 25, 50 and 75 µM inhibited JAK2 and c-Src activity and induced apoptosis by inhibiting the phosphorylation of STAT3 and STAT3 downstream genes, such as Bcl-2, cyclin D, survivin, and VEGF, and upregulating caspases-3, caspases-7, and caspases-9
cSrc↓,
Apoptosis↑,
p‑STAT3↓,
cycD1↓,
Casp3↑,
Casp7↑,
Casp9↑,
N-cadherin↓, downregulated the mesenchymal genes expression N-cadherin, vimentin, and TWIST, while upregulating epithelial genes like E-cadherin and cytokeratin-19.
Vim↓,
Twist↓,
E-cadherin↑,
ChemoSen↑, The combined treatment of 5 μM TQ and 2 μg/mL cisplatin was more effective in cancer growth and progression than either agent alone in a xenograft tumor mouse model.
eff↑, TQ–artemisinin hybrid therapy (2.6 μM) showed an enhanced ROS generation level and concomitant DNA damage induction in human colon cancer cells, while not affecting nonmalignant colon epithelial at 100 μM
EMT↓, TQ inhibits the survival signaling pathways to reduce carcinogenesis progress rate, and decreases cancer metastasis through regulation of epithelial to mesenchymal transition (EMT).
ROS↑, Apoptosis is induced by TQ in cancer cells through producing ROS, demethylating and re-expressing the TSG
DNMT1↓, inhibits DNMT1, figure 2
eff↑, TQ–vitamin D3 combination significantly reduced pro-cancerous molecules (Wnt, β-catenin, NF-κB, COX-2, iNOS, VEGF and HSP-90) a
EZH2↓, reduced angiogenesis by downregulating significant angiogenic genes such as versican (VCAN), the growth factor receptor-binding protein 2 (Grb2), and enhancer of zeste homolog 2 (EZH2), which participates in histone methylatio
hepatoP↑, Moreover, TQ improved liver function as well as reduced hepatocellular carcinoma progression
Zeb1↓, TQ decreases the Twist1 and Zeb1 promoter activities,
RadioS↑, TQ combined with radiation inhibited proliferation and induced apoptosis more than a TQ–cisplatin combination against SCC25 and CAL27 cell lines
HDAC↓, TQ has inhibited the histone deacetylase (HDAC) enzyme and reduced its total activity.
HDAC1↓, as well as decreasing the expression of HDAC1, HDAC2, and HDAC3 by 40–60%
HDAC2↓,
HDAC3↓,
*NAD↑, In non-cancer cells, TQ can increase cellular NAD+
*SIRT1↑, An increase in the levels of intracellular NAD+ led to the activation of the SIRT1-dependent metabolic pathways
SIRT1↓, On the other hand, TQ induced apoptosis by downregulating SIRT1 and upregulating p73 in the T cell leukemia Jurkat cell line
*Inflam↓, TQ treatment of male Sprague–Dawley rats has reduced the inflammatory markers (CRP, TNF-α, IL-6, and IL-1β) and anti-inflammatory cytokines (IL-10 and IL-4) triggered by sodium nitrite
*CRP↓,
*TNF-α↓,
*IL6↓,
*IL1β↓,
*eff↑, The TQ–piperin combination has also decreased the oxidative damage triggered by microcystin in liver tissue and reduced malondialdehyde (MDA) and NO, while inducing glutathione (GSH) levels and superoxide dismutase (SOD), catalase (CAT), and glutathi
*MDA↓,
*NO↓,
*GSH↑,
*SOD↑,
*Catalase↑,
*GPx↑,
PI3K↓, repressing the activation of vital pathways, such as JAK/STAT and PI3K/AKT/mTOR.
mTOR↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
5LO↓,1,   Akt↓,2,   p‑Akt↓,1,   AMPK↑,1,   AP-1↓,1,   Apoptosis↑,1,   ATG7↑,1,   BAX↑,2,   Bcl-2↓,3,   Bcl-xL↓,1,   Beclin-1↑,1,   BID↓,1,   BioAv↝,1,   Casp↑,1,   Casp3↑,2,   Casp7↑,1,   Casp8↑,1,   Casp9↑,2,   CDC2↓,1,   CDC25↓,1,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   ChemoSen↑,2,   cMET↓,1,   cMyc↓,2,   COX2↓,2,   cSrc↓,1,   CXCL1↓,1,   CXCR4↓,3,   cycA1↓,1,   cycD1↓,3,   CYP1B1↑,1,   Cyt‑c↑,1,   DLC1↑,1,   DNMT1↓,2,   DR5↑,1,   E-cadherin↑,2,   E2Fs↓,1,   eff↑,4,   eIF2α↓,1,   EMT↓,1,   ERK↓,2,   ERK↑,1,   EZH2↓,1,   Fas↑,1,   FOXO↑,1,   GSK‐3β↓,1,   HDAC↓,1,   HDAC1↓,2,   HDAC2↓,1,   HDAC3↓,1,   hepatoP↑,1,   IL1↓,1,   IL10↓,1,   IL12↓,1,   IL2↑,1,   IL6↓,1,   iNOS↓,1,   ITGA5↓,1,   JAK2↓,3,   JNK↑,1,   Ki-67↓,1,   LC3II↑,1,   MAPK↑,1,   p‑MAPK↑,1,   Mcl-1↓,1,   MET↓,1,   MMP2↓,1,   MMP7↓,2,   MMP9↓,2,   mTOR↓,2,   p‑mTOR↓,1,   Myc↓,1,   N-cadherin↓,2,   NF-kB↓,2,   NOTCH↓,1,   p16↑,1,   P21↑,1,   p27↑,1,   p38↑,1,   p‑p38↑,1,   P53↑,2,   p65↓,1,   P70S6K↓,1,   cl‑PARP↑,1,   PI3K↓,2,   PPARγ↓,1,   PPARγ↑,1,   PTEN↑,1,   RadioS↑,1,   ROS↑,2,   ROS⇅,1,   selectivity↑,1,   SIRT1↓,1,   Slug↓,1,   Snail↓,1,   STAT3↓,1,   p‑STAT3↓,2,   survivin↓,2,   TET2↑,1,   TNF-α↓,1,   TRAIL↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   Twist↓,3,   UHRF1↓,1,   VEGF↓,1,   VEGFR2↓,2,   Vim↓,2,   Wnt↓,1,   XIAP↓,1,   Zeb1↓,3,   β-catenin/ZEB1↓,2,  
Total Targets: 115

Results for Effect on Normal Cells:
BioAv↓,1,   Catalase↑,1,   CRP↓,1,   eff↑,1,   GPx↑,1,   GSH↑,1,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   MDA↓,1,   NAD↑,1,   NO↓,1,   SIRT1↑,1,   SOD↑,1,   TNF-α↓,1,  
Total Targets: 15

Scientific Paper Hit Count for: CXCR4, Chemokine Receptor Type 4
3 Thymoquinone
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:162  Target#:79  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page