condition found
Features: Anti-oxidant, anti-tumor |
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin. Pathways: -Cell cycle arrest, apoptosis induction, ROS generation in cancer cells -inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade -Inhibit angiogenic factors such as VEGF, MMPs -Inhibit HDACs, UHRF1, and DNMTs -Note half-life 3-6hrs. BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ. DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai) Pathways: - usually induce ROS production in Cancer cells, and lowers ROS in normal cells - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product) -Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells -HIF1A induces the expression of vascular endothelial growth factor (VEGF) -High HIF-1α expression is associated with Poor prognosis -Low HIF-1α expression is associated with Better prognosis -Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism. -Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis Key mediators of aerobic glycolysis regulated by HIF-1α. -GLUT-1 → regulation of the flux of glucose into cells. -HK2 → catalysis of the first step of glucose metabolism. -PKM2 → regulation of rate-limiting step of glycolysis. -Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis. -LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate; HIF-1α Inhibitors: -Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate). -Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions. -EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity. -Emodin: reduce HIF-1α expression. (under hypoxia). -Apigenin: inhibit HIF-1α accumulation. |
2139- | TQ,  |   | Thymoquinone regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the TLR4 signaling pathway |
- | in-vivo, | Nor, | NA |
2138- | TQ,  |   | Thymoquinone has a synergistic effect with PHD inhibitors to ameliorate ischemic brain damage in mice |
- | in-vivo, | Nor, | NA |
3431- | TQ,  |   | PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer |
- | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW48 |
962- | TQ,  |   | Thymoquinone affects hypoxia-inducible factor-1α expression in pancreatic cancer cells via HSP90 and PI3K/AKT/mTOR pathways |
- | in-vitro, | PC, | PANC1 | - | in-vitro, | Nor, | hTERT-HPNE | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | Bxpc-3 |
2125- | TQ,  |   | Thymoquinone Selectively Kills Hypoxic Renal Cancer Cells by Suppressing HIF-1α-Mediated Glycolysis |
- | in-vitro, | RCC, | RCC4 | - | in-vitro, | RCC, | Caki-1 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:162 Target#:143 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid