condition found tbRes List
TQ, Thymoquinone: Click to Expand ⟱
Features: Anti-oxidant, anti-tumor
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin.
Pathways:
-Cell cycle arrest, apoptosis induction, ROS generation in cancer cells
-inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade
-Inhibit angiogenic factors such as VEGF, MMPs
-Inhibit HDACs, UHRF1, and DNMTs

-Note half-life 3-6hrs.
BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ.
DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai)
Pathways:
- usually induce ROS production in Cancer cells, and lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


MMP9, MMP9: Click to Expand ⟱
Source: HalifaxProj(suppress)
Type:
Matrix metalloproteinase-9 (MMP-9) is an enzyme that plays a significant role in the degradation of extracellular matrix components.
MMP-9 facilitates the breakdown of the extracellular matrix, which can enable cancer cells to invade surrounding tissues and spread to distant sites (metastasis).
Elevated levels of MMP-9 have been associated with poor prognosis in several cancers, including breast, lung, and colorectal cancers.
MMP2 and MMP9: two enzymes are critical to tumor invasion.


Scientific Papers found: Click to Expand⟱
1920- JG,  TQ,  Plum,    Natural quinones induce ROS-mediated apoptosis and inhibit cell migration in PANC-1 human pancreatic cancer cell line
- in-vitro, PC, PANC1
ROS↑, thymoquinone, plumbagin and juglone were evaluated for their influence on reactive oxygen species (ROS) generation through 2,7-dichlorofluorescein diacetate (DCFDA) staining and they dramatically increased the intracellular ROS level in treated PANC-
TumCMig↓, inhibited PANC-1 cell migration
MMP9↓, reduced expression of matrix metalloproteinase-9 (MMP-9) in juglone-treated cells

3559- TQ,    Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease
- Review, AD, NA - Review, Var, NA
*antiOx↑, promising potential in the prevention and treatment of AD due to its significant antioxidative, anti-inflammatory,
*Inflam↑, anti-inflammatory activity of TQ is mediated through the Toll-like receptors (TLRs)
*AChE↓, In addition, it shows anticholinesterase activity and prevents α-synuclein induced synaptic damage.
AntiCan↑, NS plant, has been proven to have a wide range of pharmacological interventions, including antidiabetic, anticancer, cardioprotective, retinoprotective, renoprotective, neuroprotective, hepatoprotective and antihypertensive effects
*cardioP↑,
*RenoP↑,
*neuroP↑,
*hepatoP↑,
TumCG↓, potential ability to inhibit tumor growth by stimulating apoptosis as well as by suppression of the P13K/Akt pathways, cell cycle arrest and by inhibition of angiogenesis
Apoptosis↑,
PI3K↓,
Akt↑,
TumCCA↑,
angioG↓,
*NF-kB↓, TQ inhibits nuclear translocation of NF-kB which subsequently blocks the production of NF-kB mediated neuroinflammatory cytokines
*TLR2↓, TQ administration at different doses (10, 20, 40 mg/kg) significantly down-regulated the mRNA expression of TLR-2, TLR-4, MyD88, TRIF and their downstream effectors Interferon regulatory factor 3 (IRF-3)
*TLR4↓,
*MyD88↓,
*TRIF↓,
*IRF3↓,
*IL1β↓, TQ also inhibits LPS induced pro-inflammatory cytokine release like IL-1B, IL-6 and IL-12 p40/70 via its interaction with NF-kB
*IL6↓,
*IL12↓,
*NRF2↑, Nuclear erythroid-2 related factor/antioxidant response element (Nrf 2/ARE) being an upstream signaling pathway of NF-kB signaling pathway, its activation by TQ
*COX2↓, TQ also inhibits the expression of all genes regulated by NF-kB, i.e., COX-2, VEGF, MMP-9, c-Myc, and cyclin D1 which distinctively lowers NF-kB activation making it a potentially effective inhibitor of inflammation, proliferation and invasion
*VEGF↓,
*MMP9↓,
*cMyc↓,
*cycD1↓,
*TumCP↓,
*TumCI↓,
*MDA↓, it prevents the rise of malondialdehyde (MDA), transforming growth factor beta (TGF-β), c-reactive protein, IL1-β, caspase-3 and concomitantly upregulates glutathione (GSH), cytochrome c oxidase, and IL-10 levels [92].
*TGF-β↓,
*CRP↓,
*Casp3↓,
*GSH↑,
*IL10↑,
*iNOS↑, decline of inducible nitric oxide synthase (iNOS) protein expression
*lipid-P↓, TQ prominently mitigated hippocampal lipid peroxidation and improved SOD activity
*SOD↑,
*H2O2↓, TQ is a strong hydrogen peroxide, hydroxyl scavenger and lipid peroxidation inhibitor
*ROS↓, TQ (0.1 and 1 μM) ensured the inhibition of free radical generation, lowering of the release of lactate dehydrogenase (LDH)
*LDH↓,
*Catalase↑, upsurge the levels of GSH, SOD, catalase (CAT) and glutathione peroxidase (GPX)
*GPx↑,
*AChE↓, TQ exhibited the highest AChEI activity of 53.7 g/mL in which NS extract overall exhibited 84.7 g/mL, which suggests a significant AChE inhibition.
*cognitive↑, Most prominently, TQ has been found to regulate neurite maintenance for cognitive benefits by phosphorylating and thereby activating the MAPK protein, particularly the JNK proteins for embryogenesis and also lower the expression levels of BAX
*MAPK↑,
*JNK↑,
*BAX↓,
*memory↑, TQ portrays its potential of spatial memory enhancement by reversing the conditions as observed by MWM task
*Aβ↓, TQ thus, has been shown to ameliorate the Aβ accumulation
*MMP↑, improving the cellular activity, inhibiting mitochondrial membrane depolarization and suppressing ROS

3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, It appears that the cellular and/or physiological context(s) determines whether TQ acts as a pro-oxidant or an anti-ox- idant in vivo
Fas↑, Figure 2, cell death
DR5↑,
TRAIL↑,
Casp3↑,
Casp8↑,
Casp9↑,
P53↑,
mTOR↓,
Bcl-2↓,
BID↓,
CXCR4↓,
JNK↑,
p38↑,
MAPK↑,
LC3II↑,
ATG7↑,
Beclin-1↑,
AMPK↑,
PPARγ↑, cell survival
eIF2α↓,
P70S6K↓,
VEGF↓,
ERK↓,
NF-kB↓,
XIAP↓,
survivin↓,
p65↓,
DLC1↑, epigenetic
FOXO↑,
TET2↑,
CYP1B1↑,
UHRF1↓,
DNMT1↓,
HDAC1↓,
IL2↑, inflammation
IL1↓,
IL6↓,
IL10↓,
IL12↓,
TNF-α↓,
iNOS↓,
COX2↓,
5LO↓,
AP-1↓,
PI3K↓, invastion
Akt↓,
cMET↓,
VEGFR2↓,
CXCL1↓,
ITGA5↓,
Wnt↓,
β-catenin/ZEB1↓,
GSK‐3β↓,
Myc↓,
cycD1↓,
N-cadherin↓,
Snail↓,
Slug↓,
Vim↓,
Twist↓,
Zeb1↓,
MMP2↓,
MMP7↓,
MMP9↓,
JAK2↓, cell proliferiation
STAT3↓,
NOTCH↓,
cycA1↓,
CDK2↓,
CDK4↓,
CDK6↓,
CDC2↓,
CDC25↓,
Mcl-1↓,
E2Fs↓,
p16↑,
p27↑,
P21↑,
ChemoSen↑, Such chemo-potentiating effects of TQ in different cancer cells have been observed with 5-fluorouracil in gastric cancer and colorectal cancer models

3425- TQ,    Advances in research on the relationship between thymoquinone and pancreatic cancer
Apoptosis↑, TQ can inhibit cell proliferation, promote cancer cell apoptosis, inhibit cell invasion and metastasis, enhance chemotherapeutic sensitivity, inhibit angiogenesis, and exert anti-inflammatory effects.
TumCP↓,
TumCI↓,
TumMeta↓,
ChemoSen↑,
angioG↓,
Inflam↓,
NF-kB↓, These anticancer effects predominantly involve the nuclear factor (NF)-κB, phosphoinositide 3 kinase (PI3K)/Akt, Notch, transforming growth factor (TGF)-β, c-Jun N-terminal kinase (JNK)
PI3K↓,
Akt↓,
TGF-β↓,
Jun↓,
p38↑, and p38 mitogen-activated protein kinase (MAPK) signaling pathways as well as the regulation of the cell cycle, matrix metallopeptidase (MMP)-9 expression, and pyruvate kinase isozyme type M2 (PKM2) activity.
MAPK↑, activation of the JNK and p38 MAPK
MMP9↓,
PKM2↓, decrease in PKM2 activity
ROS↑, ROS-mediated activation
JNK↑, activation of the JNK and p38 MAPK
MUC4↓, downregulation of MUC4;
TGF-β↑, TQ led to the activation of the TGF-β pathway and subsequent downregulation of MUC4
Dose↝, Q acts as an antioxidant (free radical scavenger) at low concentrations and as a pro-oxidant at high concentrations.
FAK↓, TQ can inhibit several key molecules such as FAK, Akt, NF-κB, and MMP-9 and that these molecules interact in a cascade to affect the metastasis of pancreatic cancer
NOTCH↓, TQ involved in increasing chemosensitivity consist of blocking the Notch1/PTEN, PI3K/Akt/mTOR, and NF-κB signaling pathways, reducing PKM2 expression, and inhibiting the Warburg effect.
PTEN↑, it also restored the PTEN protein that had been inhibited by GEM
mTOR↓,
Warburg↓, reducing PKM2 expression, and inhibiting the Warburg effect.
XIAP↓,
COX2↓,
Casp9↑,
Ki-67↓,
CD34↓,
VEGF↓,
MCP1↓,
survivin↓,
Cyt‑c↑,
Casp3↑,
H4↑,
HDAC↓,

3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, TQ selectively inhibits the cancer cells’ proliferation in leukemia [9], breast [10], lungs [11], larynx [12], colon [13,14], and osteosarcoma [15]. However, there is no effect against healthy cells
P53↑, It also re-expressed tumor suppressor genes (TSG), such as p53 and Phosphatase and tensin homolog (PTEN) in lung cancer
PTEN↑,
NF-kB↓, antitumor properties by regulating different targets, such as nuclear factor kappa B (NF-Kb), peroxisome proliferator-activated receptor-γ (PPARγ), and c-Myc [1], which resulted in caspases protein activation
PPARγ↓,
cMyc↓,
Casp↑,
*BioAv↓, Due to hydrophobicity, there are limitations in the bioavailability and drug formation of TQ.
BioAv↝, TQ is sensitive to light; a short period of exposure results in severe degradation, regardless of the solution’s acidity and solvent type [27]. It is also unstable in alkaline solutions because TQ’s stability decreases with rising pH
eff↑, Encapsulating TQ with CS improves the uptake and bioavailability of TQ but has low encapsulation efficiency (35%)
survivin↓, TQ showed antiproliferative and pro-apoptotic potency on breast cancer through the suppression of anti-apoptotic proteins, such as survivin, Bcl-xL, and Bcl-2
Bcl-xL↓,
Bcl-2↓,
Akt↓, treating doxorubicin-resistant MCF-7/DOX cells with TQ inhibited Akt and Bcl2 phosphorylation and increased the expression of PTEN and apoptotic regulators such as Bax, cleaved PARP, cleaved caspases, p53, and p21 [
BAX↑,
cl‑PARP↑,
CXCR4↓, inhibited metastasis with significant inhibition of chemokine receptor Type 4 (CXCR4), which is considered a poor prognosis indicator, matrix metallopeptidase 9 (MMP9), vascular endothelial growth factor Receptor 2 (VEGFR2), Ki67, and COX2
MMP9↓,
VEGFR2↓,
Ki-67↓,
COX2↓,
JAK2↓, TQ at 25, 50 and 75 µM inhibited JAK2 and c-Src activity and induced apoptosis by inhibiting the phosphorylation of STAT3 and STAT3 downstream genes, such as Bcl-2, cyclin D, survivin, and VEGF, and upregulating caspases-3, caspases-7, and caspases-9
cSrc↓,
Apoptosis↑,
p‑STAT3↓,
cycD1↓,
Casp3↑,
Casp7↑,
Casp9↑,
N-cadherin↓, downregulated the mesenchymal genes expression N-cadherin, vimentin, and TWIST, while upregulating epithelial genes like E-cadherin and cytokeratin-19.
Vim↓,
Twist↓,
E-cadherin↑,
ChemoSen↑, The combined treatment of 5 μM TQ and 2 μg/mL cisplatin was more effective in cancer growth and progression than either agent alone in a xenograft tumor mouse model.
eff↑, TQ–artemisinin hybrid therapy (2.6 μM) showed an enhanced ROS generation level and concomitant DNA damage induction in human colon cancer cells, while not affecting nonmalignant colon epithelial at 100 μM
EMT↓, TQ inhibits the survival signaling pathways to reduce carcinogenesis progress rate, and decreases cancer metastasis through regulation of epithelial to mesenchymal transition (EMT).
ROS↑, Apoptosis is induced by TQ in cancer cells through producing ROS, demethylating and re-expressing the TSG
DNMT1↓, inhibits DNMT1, figure 2
eff↑, TQ–vitamin D3 combination significantly reduced pro-cancerous molecules (Wnt, β-catenin, NF-κB, COX-2, iNOS, VEGF and HSP-90) a
EZH2↓, reduced angiogenesis by downregulating significant angiogenic genes such as versican (VCAN), the growth factor receptor-binding protein 2 (Grb2), and enhancer of zeste homolog 2 (EZH2), which participates in histone methylatio
hepatoP↑, Moreover, TQ improved liver function as well as reduced hepatocellular carcinoma progression
Zeb1↓, TQ decreases the Twist1 and Zeb1 promoter activities,
RadioS↑, TQ combined with radiation inhibited proliferation and induced apoptosis more than a TQ–cisplatin combination against SCC25 and CAL27 cell lines
HDAC↓, TQ has inhibited the histone deacetylase (HDAC) enzyme and reduced its total activity.
HDAC1↓, as well as decreasing the expression of HDAC1, HDAC2, and HDAC3 by 40–60%
HDAC2↓,
HDAC3↓,
*NAD↑, In non-cancer cells, TQ can increase cellular NAD+
*SIRT1↑, An increase in the levels of intracellular NAD+ led to the activation of the SIRT1-dependent metabolic pathways
SIRT1↓, On the other hand, TQ induced apoptosis by downregulating SIRT1 and upregulating p73 in the T cell leukemia Jurkat cell line
*Inflam↓, TQ treatment of male Sprague–Dawley rats has reduced the inflammatory markers (CRP, TNF-α, IL-6, and IL-1β) and anti-inflammatory cytokines (IL-10 and IL-4) triggered by sodium nitrite
*CRP↓,
*TNF-α↓,
*IL6↓,
*IL1β↓,
*eff↑, The TQ–piperin combination has also decreased the oxidative damage triggered by microcystin in liver tissue and reduced malondialdehyde (MDA) and NO, while inducing glutathione (GSH) levels and superoxide dismutase (SOD), catalase (CAT), and glutathi
*MDA↓,
*NO↓,
*GSH↑,
*SOD↑,
*Catalase↑,
*GPx↑,
PI3K↓, repressing the activation of vital pathways, such as JAK/STAT and PI3K/AKT/mTOR.
mTOR↓,

3420- TQ,    Thymoquinone alleviates the accumulation of ROS and pyroptosis and promotes perforator skin flap survival through SIRT1/NF-κB pathway
- in-vitro, Nor, HUVECs - in-vitro, NA, NA
*NF-kB↓, TQ improves perforator flap survival by inhibiting the NF-κB/NLRP3 pathway and promoting angiogenesis.
*NLRP3↓,
*angioG↑,
*MMP9↑, TQ treatment increased the levels of Cadherin-5, MMP9, and VEGF
*VEGF↑,
*OS↑, TQ enhances the survival rate and angiogenesis of multi-regional perforator flaps.
*Pyro?, TQ inhibits pyroptosis after ischemia-reperfusion injury in rat perforator flaps
*ROS↓, TQ ameliorates oxidative stress and apoptosis following ischemia-reperfusion injury in rat perforator flaps
*Apoptosis↓,
*SIRT1↑, Western blot analysis revealed that SIRT1 protein expression increased after TQ treatment,
*SOD1↑, TQ treatment increased the protein expression levels of SOD1, HO1, and eNOS in rat perforator flap tissues, t
*HO-1↑,
*eNOS↑,
*ASC?, In our current experiments, we found that TQ reduced the expression of NLRP3, GSDMD-N, Caspase-1, IL-1β, IL-18, and ASC proteins both in vivo and in vitro.
*Casp1↓,
*IL1β↓,
*IL18↓,

2095- TQ,    Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis
- Review, Var, NA
TumCCA↑, cell cycle arrest, apoptosis induction, ROS generation
Apoptosis↑,
ROS↑,
Cyt‑c↑, release of mitochondrial cytochrome C, an increase in the Bax/Bcl-2 ratio, activations of caspases-3, -9 and -8, cleavage of PARP
Bax:Bcl2↑,
Casp3↑,
Casp9↑,
cl‑PARP↑,
P53↑, increased expressions of p53 and p21,
P21↑,
cMyc↓, decreased expressions of oncoproteins (c-Myc), human telomerase reverse transcriptase (hTERT), cyclin D1, and cyclin-dependent kinase-4 (CDK-4).
hTERT↓,
cycD1↓,
CDK4↓,
NF-kB↓, inhibited NF-κB activation
IAP1↓, (IAP1, IAP2, XIAP Bcl-2, Bcl-xL, and survivin), proliferative (cyclin D1, cyclooxygenase-2, and c-Myc), and angiogenic (matrix metalloproteinase-9 and vascular endothelial growth factor)
IAP2↓,
XIAP↓,
Bcl-xL↓,
survivin↓,
COX2↓,
MMP9↓,
VEGF↓,
eff↑, combination of TQ and cisplatin in the treatment of lung cancer in a mouse xenograft model showed that TQ was able to inhibit cell proliferation (nearly 90%), reduce cell viability, induce apoptosis, and reduce tumor volume and tumor weight

2091- TQ,    Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells
- in-vitro, BC, MCF-7 - in-vitro, GC, AGS
Dose↝, The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells
Casp3↑, N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels
Bcl-2↓,
MMP2↓, N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group
MMP9↓,
HSP70/HSPA5↓,

1935- TQ,    Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis
- Review, OS, NA
Apoptosis↑, Nigella sativa, has received considerable attention in cancer treatment owing to its distinctive properties, including apoptosis induction, cell cycle arrest, angiogenesis and metastasis inhibition, and reactive oxygen species (ROS) generation
TumCCA↑,
angioG↓,
TumMeta↓,
ROS↑,
P53↑, TQ upregulated the expression of p53 in a time-dependent manner, promoting apoptosis in MCF-7
Twist↓, TQ to BT 549 cell lines (breast cancer cells) in a dose-dependent fashion reduced the transcription activity of TWIST1, one of the promotors of endothelial-to-mesenchymal transition (EMT)
E-cadherin↑, TQ engagement increased the expression of E-cadherin and decreased the expression of N-cadherin
N-cadherin↓,
NF-kB↓, fig 1
IL8↓,
XIAP↓,
Bcl-2↓,
STAT3↓,
MAPK↓,
PI3K↓,
Akt↓,
ERK↓,
MMP2↓,
MMP9↓,
*ROS↓, prevent cancer formation
HO-1↑, Moreover, TQ could stunt the growth of HCC cell lines through the generation of ROS, heme oxygenase-1 (HO-1)
selectivity↑, application of phytochemicals such as TQ is a promising strategy since these compounds show less toxicity against normal cells.
TumCG↓, Despite inhibiting the growth and viability of different cancer types, TQ has no adverse effects on healthy cells

2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells
ChemoSen↑,
BioAv↑, TQ adds another advantage in overcoming blood-brain barrier
PTEN↑, TQ upregulates PTEN signaling [72, 73], interferes with PI3K/Akt signaling and promotes G(1) arrest, downregulates PI3K/Akt
PI3K↓,
Akt↓,
TumCCA↓,
NF-kB↓, and NF-κB and their regulated gene products, such as p-AKT, p65, XIAP, Bcl-2, COX-2, and VEGF, and attenuates mTOR activity
p‑Akt↓,
p65↓,
XIAP↓,
Bcl-2↓,
COX2↓,
VEGF↓,
mTOR↓,
RAS↓, Studies in colorectal cancer have demonstrated that TQ inhibits the Ras/Raf/MEK/ERK signaling
Raf↓,
MEK↓,
ERK↓,
MMP2↓, Multiple studies have reported that TQ downregulates FAC and reduces the secretion of MMP-2 and MMP-9 and thereby reduces GBM cells migration, adhesion, and invasion
MMP9↓,
TumCMig↓,
TumCI↓,
Casp↑, caspase activation and PARP cleavage
cl‑PARP↑,
ROS⇅, TQ is hypothesized to act as an antoxidant at lower concentrations and a prooxidant at higher concentrations depending on its environment [89]
ROS↑, In tumor cells specifically, TQ generates ROS production that leads to reduced expression of prosurvival genes, loss of mitochondrial potential,
MMP↓,
eff↑, elevated level of ROS generation and simultaneous DNA damage when treated with a combination of TQ and artemisinin
Telomerase↓, inhibition of telomerase by TQ through the formation of G-quadruplex DNA stabilizer, subsequently leads to rapid DNA damage which can eventually induce apoptosis in cancer cells specifically
DNAdam↑,
Apoptosis↑,
STAT3↓, TQ has shown to suppress STAT3 in myeloma, gastric, and colon cancer [86, 171, 172]
RadioS↑, TQ might enhance radiation therapeutic benefit by enhancing the cytotoxic efficacy of radiation through modulation of cell cycle and apoptosis [31]

2100- TQ,    Dual properties of Nigella Sative: Anti-oxidant and Pro-oxidant
- Review, NA, NA
ROS⇅, Pubmed data indicated that NS has both anti-oxidant and pro-oxidant properties in different cell types
*antiOx↑, NS acts as an anti-oxidant by scavenging ROS [4]. It can ameliorate ischemic reperfusion injury conditions and attenuated ROS in heart [5] intestine [6] and kidney [7]
*SOD↑, improved the activities of various enzymes like superoxide dismutase [SOD] and myeloperoxidase (MPO)
*MPO↑,
*neuroP↑, NS oil has been found to be neuroprotective against oxidative stress in epileptogenesis, pilocarpine-induced seizures [25] and opioid tolerance
*chemoP↑, Anticancer drugs leave toxic effect due to over-production of ROS. NS oil or TQ can potentially up-regulate anti-oxidant mechanisms caused by anticancer drug
*radioP↑, NS seed extracts can protect normal tissue from oxidative damage during radiotherapy of cancer patients [35,36]
NF-kB↓, TQ has been shown to exhibit down regulation of NF-κB expression in lung cancer cells
IAP1↓, Anti-apoptotic (IAP1, IAP2, XIAP Bcl-2, Bcl-xL, survivin), proliferative (cyclin D1, cyclooxygenase-2, and c-Myc) and angiogenic genes (matrix metalloproteinase-9 orMMP-9) and vascular endothelial growth factor (VEGF) were down-regulated
IAP2↓,
XIAP↓,
Bcl-xL↓,
survivin↓,
COX2↓,
MMP9↓,
VEGF↓,
ROS↑, TQ causes release of ROS in ABC cells which in turn inhibits NF-κB activity
P21↑, TQ up regulated the expression of p21 and down regulated the histone deacetylase (HDAC) activity and induced histone hyperacetylation causing induction of apoptosis and inhibition of proliferation in pancreatic cancer cell
HDAC↓,
GSH↓, TQ was found to decrease glutathione (GSH) levels in prostate cancer cells resulting in up-regulated expression of GADD45 alpha (growth arrest and DNA damage inducible gene) and AIF
GADD45A↑,
AIF↑,
STAT3↓, TQ suppressed the STAT 3; the signal transducer and activator of transcription which is involved in the abnormal transformation of a number of human malignancies [53].


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 11

Results for Effect on Cancer/Diseased Cells:
5LO↓,1,   AIF↑,1,   Akt↓,5,   Akt↑,1,   p‑Akt↓,1,   AMPK↑,1,   angioG↓,3,   AntiCan↑,1,   AP-1↓,1,   Apoptosis↑,6,   ATG7↑,1,   BAX↑,1,   Bax:Bcl2↑,1,   Bcl-2↓,5,   Bcl-xL↓,3,   Beclin-1↑,1,   BID↓,1,   BioAv↑,1,   BioAv↝,1,   Casp↑,2,   Casp3↑,5,   Casp7↑,1,   Casp8↑,1,   Casp9↑,4,   CD34↓,1,   CDC2↓,1,   CDC25↓,1,   CDK2↓,1,   CDK4↓,2,   CDK6↓,1,   chemoP↑,1,   ChemoSen↑,4,   cMET↓,1,   cMyc↓,2,   COX2↓,6,   cSrc↓,1,   CXCL1↓,1,   CXCR4↓,2,   cycA1↓,1,   cycD1↓,3,   CYP1B1↑,1,   Cyt‑c↑,2,   DLC1↑,1,   DNAdam↑,1,   DNMT1↓,2,   Dose↝,2,   DR5↑,1,   E-cadherin↑,2,   E2Fs↓,1,   eff↑,5,   eIF2α↓,1,   EMT↓,1,   ERK↓,3,   EZH2↓,1,   FAK↓,1,   Fas↑,1,   FOXO↑,1,   GADD45A↑,1,   GSH↓,1,   GSK‐3β↓,1,   H4↑,1,   HDAC↓,3,   HDAC1↓,2,   HDAC2↓,1,   HDAC3↓,1,   hepatoP↑,1,   HO-1↑,1,   HSP70/HSPA5↓,1,   hTERT↓,1,   IAP1↓,2,   IAP2↓,2,   IL1↓,1,   IL10↓,1,   IL12↓,1,   IL2↑,1,   IL6↓,1,   IL8↓,1,   Inflam↓,1,   iNOS↓,1,   ITGA5↓,1,   JAK2↓,2,   JNK↑,2,   Jun↓,1,   Ki-67↓,2,   LC3II↑,1,   MAPK↓,1,   MAPK↑,2,   Mcl-1↓,1,   MCP1↓,1,   MEK↓,1,   MMP↓,1,   MMP2↓,4,   MMP7↓,1,   MMP9↓,9,   mTOR↓,4,   MUC4↓,1,   Myc↓,1,   N-cadherin↓,3,   NF-kB↓,7,   NOTCH↓,2,   p16↑,1,   P21↑,3,   p27↑,1,   p38↑,2,   P53↑,4,   p65↓,2,   P70S6K↓,1,   cl‑PARP↑,3,   PI3K↓,6,   PKM2↓,1,   PPARγ↓,1,   PPARγ↑,1,   PTEN↑,3,   RadioS↑,2,   Raf↓,1,   RAS↓,1,   ROS↑,7,   ROS⇅,3,   selectivity↑,2,   SIRT1↓,1,   Slug↓,1,   Snail↓,1,   STAT3↓,4,   p‑STAT3↓,1,   survivin↓,5,   Telomerase↓,1,   TET2↑,1,   TGF-β↓,1,   TGF-β↑,1,   TNF-α↓,1,   TRAIL↑,1,   TumCCA↓,1,   TumCCA↑,3,   TumCG↓,2,   TumCI↓,2,   TumCMig↓,2,   TumCP↓,1,   TumMeta↓,2,   Twist↓,3,   UHRF1↓,1,   VEGF↓,5,   VEGFR2↓,2,   Vim↓,2,   Warburg↓,1,   Wnt↓,1,   XIAP↓,6,   Zeb1↓,2,   β-catenin/ZEB1↓,1,  
Total Targets: 148

Results for Effect on Normal Cells:
AChE↓,2,   angioG↑,1,   antiOx↑,2,   Apoptosis↓,1,   ASC?,1,   Aβ↓,1,   BAX↓,1,   BioAv↓,1,   cardioP↑,1,   Casp1↓,1,   Casp3↓,1,   Catalase↑,2,   chemoP↑,1,   cMyc↓,1,   cognitive↑,1,   COX2↓,1,   CRP↓,2,   cycD1↓,1,   eff↑,1,   eNOS↑,1,   GPx↑,2,   GSH↑,2,   H2O2↓,1,   hepatoP↑,1,   HO-1↑,1,   IL10↑,1,   IL12↓,1,   IL18↓,1,   IL1β↓,3,   IL6↓,2,   Inflam↓,1,   Inflam↑,1,   iNOS↑,1,   IRF3↓,1,   JNK↑,1,   LDH↓,1,   lipid-P↓,1,   MAPK↑,1,   MDA↓,2,   memory↑,1,   MMP↑,1,   MMP9↓,1,   MMP9↑,1,   MPO↑,1,   MyD88↓,1,   NAD↑,1,   neuroP↑,2,   NF-kB↓,2,   NLRP3↓,1,   NO↓,1,   NRF2↑,1,   OS↑,1,   Pyro?,1,   radioP↑,1,   RenoP↑,1,   ROS↓,3,   SIRT1↑,2,   SOD↑,3,   SOD1↑,1,   TGF-β↓,1,   TLR2↓,1,   TLR4↓,1,   TNF-α↓,1,   TRIF↓,1,   TumCI↓,1,   TumCP↓,1,   VEGF↓,1,   VEGF↑,1,  
Total Targets: 68

Scientific Paper Hit Count for: MMP9, MMP9
11 Thymoquinone
1 Juglone
1 Plumbagin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:162  Target#:203  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page