condition found tbRes List
TQ, Thymoquinone: Click to Expand ⟱
Features: Anti-oxidant, anti-tumor
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin.
Pathways:
-Cell cycle arrest, apoptosis induction, ROS generation in cancer cells
-inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade
-Inhibit angiogenic factors such as VEGF, MMPs
-Inhibit HDACs, UHRF1, and DNMTs

-Note half-life 3-6hrs.
BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ.
DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai)
Pathways:
- usually induce ROS production in Cancer cells, and lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


radioP, RadioProtective: Click to Expand ⟱
Source:
Type:
Protect against the damaging effects of radiation therapy.


Scientific Papers found: Click to Expand⟱
3407- TQ,    Thymoquinone and its pharmacological perspective: A review
- Review, NA, NA
*antiOx↑, TQ has been reported for its antioxidant properties to combat oxidative stress in several literatures
*ROS↓, scavenges the highly reactive oxygen
*GSTs↑, induction of glutathione transferase and quinone reductase
*GSR↑,
*GSH↑, TQ induces the Glutathione production with simultaneous inhibition of superoxide radical production
*RenoP↑, Improved renal function against mercuric chloride, doxorubicin and cisplatin damage have been reported through TQ based induction of Glutathione
*IL1β↓, Decreased the levels of IL-1β, TNFα, MMP-13, cox-2 and PGE(2)
*TNF-α↓,
*MMP13↓,
*COX2↓, reducing COX-2 gene expression, it also inhibited colon cancer cell migration.
*PGE2↓,
*radioP↑, Normal cell protection from ionizing radiation in cancer cell treatment.
Twist↓, TQ treatment have evidenced the inhibition of TWIST1 promoter activity and reduces it expression in cancer cell line leading inhibition of epithelial-mesenchymal transition mediated metastasis
EMT↓,
NF-kB↓, inhibiting the NF-κB expression in breast cancer model of mice
p‑PI3K↓, TQ (20 M) decreased the activation of prostaglandin receptors EP2 and EP4 in LoVo colon cancer cells by reducing p-PI3K, p-Akt, p-GSK3, and -catenin.
p‑Akt↓,
p‑GSK‐3β↓,
DNMT1↓, TQ's anticancer effects are mediated by DNMT1-dependent (dependent DNA methylation mediates) DNA methylation,
HDAC↓, inhibiting histone deacetylase (HDAC)

2090- TQ,    Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment: Evidence from Preclinical Studies
- Review, Var, NA
AntiCan↑, has been found to exhibit anticancer effects in numerous preclinical studies
ChemoSen↑, TQ can specifically sensitize tumor cells toward conventional cancer treatments (e.g., radiotherapy, chemotherapy, and immunotherapy)
RadioS↑,
chemoP↑, and simultaneously minimize therapy-associated toxic effects in normal cells
radioP↑,

2085- TQ,    Anticancer Activities of Nigella Sativa (Black Cumin)
- Review, Var, NA
MMP↓, TQ induces apoptosis, disrupts mitochondrial membrane potential and triggers the activation of caspases 8, 9 and 3 in HL-60 cells.
Casp3↑,
Casp8↑,
Casp9↓,
cl‑PARP↑, PARP cleavage and the release of cytochrome c from mitochondria into the cytoplasm.
Cyt‑c↑,
Bax:Bcl2↑, marked increase in Bax/Bcl2 ratios
NF-kB↓, TQ also down-regulates the expression of NF-kappa B-regulated antiapoptotic (IAP1, IAP2, XIAP Bcl-2, Bcl-xL, and survivin) gene products
IAP1↓,
IAP2↓,
XIAP↓,
Bcl-xL↓,
survivin↓,
cJun↑, TQ inducing apoptosis by the activation of c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase pathways in pancreatic cancer cell.
p38↑,
Akt↑, TQ effectively inhibited human umbilical vein endothelial cell migration, invasion, and tube formation by suppressing the activation of AKT
chemoP↑, TQ can lower the toxicity of other anticancer drugs (for example, cyclophosphamide) by an up-regulation of antioxidant mechanisms, indicating a potential clinical application for these agents to minimize the toxic effects of treatment with anticancer
radioP↑, Cemek et al. (2006) showed that N. sativa and glutathione treatment significantly antagonize the effects of radiation. Therefore, N. sativa may be a beneficial agent in protection against ionizing radiation-related tissue injury.

2115- TQ,    Protective effects of Nigella sativa on gamma radiation-induced jejunal mucosal damage in rats
- in-vivo, Nor, NA
*radioP↑, Nigella sativa has protective effects against radiation-induced damage, suggesting that clinical transfer is feasible
*MDA↓, Nigella sativa treatment significantly (p < 0.05) decreased the elevated tissue MDA levels comparison to control group and increased the reduced GSH-Px
*GSH↑,

2102- TQ,    A review on therapeutic potential of Nigella sativa: A miracle herb
- Review, Var, NA
angioG↓, TQ inhibits tumor angiogenesis and tumor growth through suppressing NF-κB and its regulated molecules.
NF-kB↓,
PPARγ↓, TQ was found to increase PPAR-γ activity and down-regulate the expression of the genes for Bcl-2, Bcl-xL and survivin in breast cancer cells.
Bcl-2↓,
Bcl-xL↓,
MUC4↓, TQ down regulated MUC4 expression through the proteasomal pathway and induced apoptosis in pancreatic cancer cells by the activation of c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase pathways
cJun↑,
p38↑,
P21↑, TQ also increased p21 WAF1 expression, inhibited HDAC activity, and induced histone hyperacetylation
HDAC↓,
radioP↑, N. sativa oil is a promising natural radioprotective agent against immunosuppressive and oxidative effects of ionizing radiation
hepatoP↑, Results suggested that N. sativa treatment protects the rat liver against hepatic ischemia reperfusion injury

2100- TQ,    Dual properties of Nigella Sative: Anti-oxidant and Pro-oxidant
- Review, NA, NA
ROS⇅, Pubmed data indicated that NS has both anti-oxidant and pro-oxidant properties in different cell types
*antiOx↑, NS acts as an anti-oxidant by scavenging ROS [4]. It can ameliorate ischemic reperfusion injury conditions and attenuated ROS in heart [5] intestine [6] and kidney [7]
*SOD↑, improved the activities of various enzymes like superoxide dismutase [SOD] and myeloperoxidase (MPO)
*MPO↑,
*neuroP↑, NS oil has been found to be neuroprotective against oxidative stress in epileptogenesis, pilocarpine-induced seizures [25] and opioid tolerance
*chemoP↑, Anticancer drugs leave toxic effect due to over-production of ROS. NS oil or TQ can potentially up-regulate anti-oxidant mechanisms caused by anticancer drug
*radioP↑, NS seed extracts can protect normal tissue from oxidative damage during radiotherapy of cancer patients [35,36]
NF-kB↓, TQ has been shown to exhibit down regulation of NF-κB expression in lung cancer cells
IAP1↓, Anti-apoptotic (IAP1, IAP2, XIAP Bcl-2, Bcl-xL, survivin), proliferative (cyclin D1, cyclooxygenase-2, and c-Myc) and angiogenic genes (matrix metalloproteinase-9 orMMP-9) and vascular endothelial growth factor (VEGF) were down-regulated
IAP2↓,
XIAP↓,
Bcl-xL↓,
survivin↓,
COX2↓,
MMP9↓,
VEGF↓,
ROS↑, TQ causes release of ROS in ABC cells which in turn inhibits NF-κB activity
P21↑, TQ up regulated the expression of p21 and down regulated the histone deacetylase (HDAC) activity and induced histone hyperacetylation causing induction of apoptosis and inhibition of proliferation in pancreatic cancer cell
HDAC↓,
GSH↓, TQ was found to decrease glutathione (GSH) levels in prostate cancer cells resulting in up-regulated expression of GADD45 alpha (growth arrest and DNA damage inducible gene) and AIF
GADD45A↑,
AIF↑,
STAT3↓, TQ suppressed the STAT 3; the signal transducer and activator of transcription which is involved in the abnormal transformation of a number of human malignancies [53].


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
AIF↑,1,   Akt↑,1,   p‑Akt↓,1,   angioG↓,1,   AntiCan↑,1,   Bax:Bcl2↑,1,   Bcl-2↓,1,   Bcl-xL↓,3,   Casp3↑,1,   Casp8↑,1,   Casp9↓,1,   chemoP↑,2,   ChemoSen↑,1,   cJun↑,2,   COX2↓,1,   Cyt‑c↑,1,   DNMT1↓,1,   EMT↓,1,   GADD45A↑,1,   GSH↓,1,   p‑GSK‐3β↓,1,   HDAC↓,3,   hepatoP↑,1,   IAP1↓,2,   IAP2↓,2,   MMP↓,1,   MMP9↓,1,   MUC4↓,1,   NF-kB↓,4,   P21↑,2,   p38↑,2,   cl‑PARP↑,1,   p‑PI3K↓,1,   PPARγ↓,1,   radioP↑,3,   RadioS↑,1,   ROS↑,1,   ROS⇅,1,   STAT3↓,1,   survivin↓,2,   Twist↓,1,   VEGF↓,1,   XIAP↓,2,  
Total Targets: 43

Results for Effect on Normal Cells:
antiOx↑,2,   chemoP↑,1,   COX2↓,1,   GSH↑,2,   GSR↑,1,   GSTs↑,1,   IL1β↓,1,   MDA↓,1,   MMP13↓,1,   MPO↑,1,   neuroP↑,1,   PGE2↓,1,   radioP↑,3,   RenoP↑,1,   ROS↓,1,   SOD↑,1,   TNF-α↓,1,  
Total Targets: 17

Scientific Paper Hit Count for: radioP, RadioProtective
6 Thymoquinone
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:162  Target#:1185  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page