condition found tbRes List
TQ, Thymoquinone: Click to Expand ⟱
Features: Anti-oxidant, anti-tumor
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin.
Pathways:
-Cell cycle arrest, apoptosis induction, ROS generation in cancer cells
-inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade
-Inhibit angiogenic factors such as VEGF, MMPs
-Inhibit HDACs, UHRF1, and DNMTs

-Note half-life 3-6hrs.
BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ.
DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai)
Pathways:
- usually induce ROS production in Cancer cells, and lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2, MMP9↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


MMP2, metalloproteinase-2: Click to Expand ⟱
Source:
Type:
Matrix metalloproteinase-2 (MMP-2) is an enzyme that plays a significant role in the degradation of extracellular matrix components, which is crucial for various physiological processes, including tissue remodeling, wound healing, and angiogenesis.
Elevated levels of MMP-2 have been associated with poor prognosis in various cancers, including breast, lung, and colorectal cancers.
MMP2 and MMP9: two enzymes are critical to tumor invasion.


Scientific Papers found: Click to Expand⟱
3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, It appears that the cellular and/or physiological context(s) determines whether TQ acts as a pro-oxidant or an anti-ox- idant in vivo
Fas↑, Figure 2, cell death
DR5↑,
TRAIL↑,
Casp3↑,
Casp8↑,
Casp9↑,
P53↑,
mTOR↓,
Bcl-2↓,
BID↓,
CXCR4↓,
JNK↑,
p38↑,
MAPK↑,
LC3II↑,
ATG7↑,
Beclin-1↑,
AMPK↑,
PPARγ↑, cell survival
eIF2α↓,
P70S6K↓,
VEGF↓,
ERK↓,
NF-kB↓,
XIAP↓,
survivin↓,
p65↓,
DLC1↑, epigenetic
FOXO↑,
TET2↑,
CYP1B1↑,
UHRF1↓,
DNMT1↓,
HDAC1↓,
IL2↑, inflammation
IL1↓,
IL6↓,
IL10↓,
IL12↓,
TNF-α↓,
iNOS↓,
COX2↓,
5LO↓,
AP-1↓,
PI3K↓, invastion
Akt↓,
cMET↓,
VEGFR2↓,
CXCL1↓,
ITGA5↓,
Wnt↓,
β-catenin/ZEB1↓,
GSK‐3β↓,
Myc↓,
cycD1↓,
N-cadherin↓,
Snail↓,
Slug↓,
Vim↓,
Twist↓,
Zeb1↓,
MMP2↓,
MMP7↓,
MMP9↓,
JAK2↓, cell proliferiation
STAT3↓,
NOTCH↓,
cycA1↓,
CDK2↓,
CDK4↓,
CDK6↓,
CDC2↓,
CDC25↓,
Mcl-1↓,
E2Fs↓,
p16↑,
p27↑,
P21↑,
ChemoSen↑, Such chemo-potentiating effects of TQ in different cancer cells have been observed with 5-fluorouracil in gastric cancer and colorectal cancer models

2091- TQ,    Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells
- in-vitro, BC, MCF-7 - in-vitro, GC, AGS
Dose↝, The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells
Casp3↑, N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels
Bcl-2↓,
MMP2↓, N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group
MMP9↓,
HSP70/HSPA5↓,

1935- TQ,    Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis
- Review, OS, NA
Apoptosis↑, Nigella sativa, has received considerable attention in cancer treatment owing to its distinctive properties, including apoptosis induction, cell cycle arrest, angiogenesis and metastasis inhibition, and reactive oxygen species (ROS) generation
TumCCA↑,
angioG↓,
TumMeta↓,
ROS↑,
P53↑, TQ upregulated the expression of p53 in a time-dependent manner, promoting apoptosis in MCF-7
Twist↓, TQ to BT 549 cell lines (breast cancer cells) in a dose-dependent fashion reduced the transcription activity of TWIST1, one of the promotors of endothelial-to-mesenchymal transition (EMT)
E-cadherin↑, TQ engagement increased the expression of E-cadherin and decreased the expression of N-cadherin
N-cadherin↓,
NF-kB↓, fig 1
IL8↓,
XIAP↓,
Bcl-2↓,
STAT3↓,
MAPK↓,
PI3K↓,
Akt↓,
ERK↓,
MMP2↓,
MMP9↓,
*ROS↓, prevent cancer formation
HO-1↑, Moreover, TQ could stunt the growth of HCC cell lines through the generation of ROS, heme oxygenase-1 (HO-1)
selectivity↑, application of phytochemicals such as TQ is a promising strategy since these compounds show less toxicity against normal cells.
TumCG↓, Despite inhibiting the growth and viability of different cancer types, TQ has no adverse effects on healthy cells

2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells
ChemoSen↑,
BioAv↑, TQ adds another advantage in overcoming blood-brain barrier
PTEN↑, TQ upregulates PTEN signaling [72, 73], interferes with PI3K/Akt signaling and promotes G(1) arrest, downregulates PI3K/Akt
PI3K↓,
Akt↓,
TumCCA↓,
NF-kB↓, and NF-κB and their regulated gene products, such as p-AKT, p65, XIAP, Bcl-2, COX-2, and VEGF, and attenuates mTOR activity
p‑Akt↓,
p65↓,
XIAP↓,
Bcl-2↓,
COX2↓,
VEGF↓,
mTOR↓,
RAS↓, Studies in colorectal cancer have demonstrated that TQ inhibits the Ras/Raf/MEK/ERK signaling
Raf↓,
MEK↓,
ERK↓,
MMP2↓, Multiple studies have reported that TQ downregulates FAC and reduces the secretion of MMP-2 and MMP-9 and thereby reduces GBM cells migration, adhesion, and invasion
MMP9↓,
TumCMig↓,
TumCI↓,
Casp↑, caspase activation and PARP cleavage
cl‑PARP↑,
ROS⇅, TQ is hypothesized to act as an antoxidant at lower concentrations and a prooxidant at higher concentrations depending on its environment [89]
ROS↑, In tumor cells specifically, TQ generates ROS production that leads to reduced expression of prosurvival genes, loss of mitochondrial potential,
MMP↓,
eff↑, elevated level of ROS generation and simultaneous DNA damage when treated with a combination of TQ and artemisinin
Telomerase↓, inhibition of telomerase by TQ through the formation of G-quadruplex DNA stabilizer, subsequently leads to rapid DNA damage which can eventually induce apoptosis in cancer cells specifically
DNAdam↑,
Apoptosis↑,
STAT3↓, TQ has shown to suppress STAT3 in myeloma, gastric, and colon cancer [86, 171, 172]
RadioS↑, TQ might enhance radiation therapeutic benefit by enhancing the cytotoxic efficacy of radiation through modulation of cell cycle and apoptosis [31]


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
5LO↓,1,   Akt↓,3,   p‑Akt↓,1,   AMPK↑,1,   angioG↓,1,   AP-1↓,1,   Apoptosis↑,2,   ATG7↑,1,   Bcl-2↓,4,   Beclin-1↑,1,   BID↓,1,   BioAv↑,1,   Casp↑,1,   Casp3↑,2,   Casp8↑,1,   Casp9↑,1,   CDC2↓,1,   CDC25↓,1,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   chemoP↑,1,   ChemoSen↑,2,   cMET↓,1,   COX2↓,2,   CXCL1↓,1,   CXCR4↓,1,   cycA1↓,1,   cycD1↓,1,   CYP1B1↑,1,   DLC1↑,1,   DNAdam↑,1,   DNMT1↓,1,   Dose↝,1,   DR5↑,1,   E-cadherin↑,1,   E2Fs↓,1,   eff↑,1,   eIF2α↓,1,   ERK↓,3,   Fas↑,1,   FOXO↑,1,   GSK‐3β↓,1,   HDAC1↓,1,   HO-1↑,1,   HSP70/HSPA5↓,1,   IL1↓,1,   IL10↓,1,   IL12↓,1,   IL2↑,1,   IL6↓,1,   IL8↓,1,   iNOS↓,1,   ITGA5↓,1,   JAK2↓,1,   JNK↑,1,   LC3II↑,1,   MAPK↓,1,   MAPK↑,1,   Mcl-1↓,1,   MEK↓,1,   MMP↓,1,   MMP2↓,4,   MMP7↓,1,   MMP9↓,4,   mTOR↓,2,   Myc↓,1,   N-cadherin↓,2,   NF-kB↓,3,   NOTCH↓,1,   p16↑,1,   P21↑,1,   p27↑,1,   p38↑,1,   P53↑,2,   p65↓,2,   P70S6K↓,1,   cl‑PARP↑,1,   PI3K↓,3,   PPARγ↑,1,   PTEN↑,1,   RadioS↑,1,   Raf↓,1,   RAS↓,1,   ROS↑,2,   ROS⇅,2,   selectivity↑,1,   Slug↓,1,   Snail↓,1,   STAT3↓,3,   survivin↓,1,   Telomerase↓,1,   TET2↑,1,   TNF-α↓,1,   TRAIL↑,1,   TumCCA↓,1,   TumCCA↑,1,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,1,   TumMeta↓,1,   Twist↓,2,   UHRF1↓,1,   VEGF↓,2,   VEGFR2↓,1,   Vim↓,1,   Wnt↓,1,   XIAP↓,3,   Zeb1↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 110

Results for Effect on Normal Cells:
ROS↓,1,  
Total Targets: 1

Scientific Paper Hit Count for: MMP2, metalloproteinase-2
4 Thymoquinone
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:162  Target#:201  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page