condition found
Features: Anti-oxidant, anti-tumor |
Thymoquinone is a bioactive compound found in the seeds of Nigella sativa, commonly known as black seed or black cumin. Pathways: -Cell cycle arrest, apoptosis induction, ROS generation in cancer cells -inhibit the activation of NF-κB, Suppress the PI3K/Akt signaling cascade -Inhibit angiogenic factors such as VEGF, MMPs -Inhibit HDACs, UHRF1, and DNMTs -Note half-life 3-6hrs. BioAv low oral bioavailability due to its lipophilic nature. Note refridgeration of Black seed oil improves the stability of TQ. DIY: ~1 part lecithin : 2–3 parts black seed oil : 4–5 parts warm water. (chat ai) Pathways: - usually induce ROS production in Cancer cells, and lowers ROS in normal cells - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - May Low AntiOxidant defense in Cancer Cells: NRF2↓(usually contrary), GSH↓ HO1↓(contrary), GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: HalifaxProj(inhibit) CGL-CS TCGA |
Type: |
Human malignancies frequently exhibit mutations in the TGF-β pathway, and overactivation of this system is linked to tumor growth by promoting angiogenesis and inhibiting the innate and adaptive antitumor immune responses. Anti-inflammatory cytokine. In normal tissues, TGF-β plays an essential role in cell cycle regulation, immune function, and tissue remodeling. - In early carcinogenesis, TGF-β typically acts as a tumor suppressor by inhibiting cell proliferation and inducing apoptosis. In advanced cancers, cells frequently become resistant to the growth-inhibitory effects of TGF-β. - TGF-β then switches roles and promotes tumor progression by stimulating epithelial-to-mesenchymal transition (EMT), cell invasion, metastasis, and immune evasion. Non-canonical (Smad-independent) pathways, such as MAPK, PI3K/Akt, and Rho signaling, also contribute to TGF-β-mediated responses. Elevated levels of TGF-β have been detected in many advanced-stage cancers, including breast, lung, colorectal, pancreatic, and prostate cancers. - The switch from a tumor-suppressive to a tumor-promoting role is often associated with increased TGF-β production and activation in the tumor microenvironment. High TGF-β expression or signaling activity is frequently correlated with aggressive disease features, resistance to therapy, increased metastasis, and poorer overall survival in many cancer types. |
3405- | TQ,  | doxoR,  |   | Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity and the underlying mechanism |
- | vitro+vivo, | NA, | NA |
3409- | TQ,  |   | Thymoquinone therapy remediates elevated brain tissue inflammatory mediators induced by chronic administration of food preservatives |
- | in-vivo, | Nor, | NA |
2132- | TQ,  |   | Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis |
- | in-vivo, | Nor, | NA |
3559- | TQ,  |   | Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease |
- | Review, | AD, | NA | - | Review, | Var, | NA |
3425- | TQ,  |   | Advances in research on the relationship between thymoquinone and pancreatic cancer |
1138- | TQ,  |   | Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway |
- | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:162 Target#:304 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid