condition found tbRes List
Ash, Ashwagandha: Click to Expand ⟱
Features:
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha).
The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides).
-The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine.
Ashwagandha is an herb that may reduce stress, anxiety, and insomnia.
*-Ashwagandha is often characterized as an antioxidant.
-Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity.
Pathways:
-Induction of Apoptosis and ROS Generation
-Hsp90 Inhibition and Proteasomal Degradation

Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM).
In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight.
- General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily.
- 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001.
- Ashwagandha Pure 400mg/capsule is available from mcsformulas.com.

-Note half-life 4-6 hrs?.
BioAv
Pathways:
- well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ERK, ERK signaling: Click to Expand ⟱
Source:
Type:
MAPK3 (ERK1)
ERK proteins are kinases that activate other proteins by adding a phosphate group. An overactivation of these proteins causes the cell cycle to stop.
The extracellular signal-regulated kinase (ERK) signaling pathway is a crucial component of the mitogen-activated protein kinase (MAPK) signaling cascade, which plays a significant role in regulating various cellular processes, including proliferation, differentiation, and survival. high levels of phosphorylated ERK (p-ERK) in tumor samples may indicate active ERK signaling and could correlate with aggressive tumor behavior

EEk singaling is frequently activated and is often associated with aggressive tumor behavior, treatment resistance, and poor outcomes.


Scientific Papers found: Click to Expand⟱
3162- Ash,    Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
- Review, Var, NA
lipid-P↓, Oral cancer 20 mg/Kg ↓Lipid peroxidation : ↑SOD, glutathione peroxidase, p53, Bcl-2
SOD↑,
GPx↑,
P53↑,
Bcl-2↑,
E6↓, Cervival cancer 8mg/Kg ↓E6, E7: ↑p53, pRb, Cyclin B1, P34 Cdc2, p21, PCNA
E7↓,
pRB↑,
CycB↑,
CDC2↑,
P21↑,
PCNA↓,
ALDH1A1↓, Mammary cancer 0-1 mg/mouse (5-10) ↓Mammosphere number, ALDH1 activity. Vimentin, glycolysis
Vim↓,
Glycolysis↓,
cMyc↓, Mesotheliome cancer 5 mg/Kg ↓Proteasomal chymotrypsin, C-Myc : ↑ Bax, CARP-1
BAX↑,
NF-kB↓,
Casp3↑, caspase-3 activation
CHOP↑, WA is found to increase activation of Elk1 and CHOP (CCAAT-enhancer-binding protein homologous protein) by RSK, as well as up-regulation of DR5 by selectively suppressing pathway ERK
DR5↑,
ERK↓,
Wnt↓, WA inhibits Wnt/β-catenin pathway via suppression of AKT signalling, which inhibits cancer cell motility and sensitises for cell death
β-catenin/ZEB1↓,
Akt↓,
HSP90↓, WA-dependent inhibition of heat shock protein (HSP) chaperone functions. WA inhibits the activity of HSP90-mediated function

3163- Ash,  Rad,    Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis
*radioP↑, Withaferin A (WA) protected only normal lymphocytes, but not cancer cells, against IR-induced apoptosis
selectivity↑,
*Casp3↓, WA treatment led to significant inhibition of IR-induced caspase-3 activation and decreased IR-induced DNA damage to lymphocytes and bone-marrow cells.
*DNAdam↓,
*ROS↓, WA reduced intracellular ROS and GSH levels
*GSH↓,
*NRF2↑, WA induced pro-survival transcription factor, Nrf-2, and expression of cytoprotective genes HO-1, catalase, SOD, peroxiredoxin-2 via ERK.
*HO-1↑,
*Catalase↑,
*SOD↑,
*Prx↑,
*ERK↑, Activated ERK promotes the nuclear translocation and activity of Nrf2


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   ALDH1A1↓,1,   BAX↑,1,   Bcl-2↑,1,   Casp3↑,1,   CDC2↑,1,   CHOP↑,1,   cMyc↓,1,   CycB↑,1,   DR5↑,1,   E6↓,1,   E7↓,1,   ERK↓,1,   Glycolysis↓,1,   GPx↑,1,   HSP90↓,1,   lipid-P↓,1,   NF-kB↓,1,   P21↑,1,   P53↑,1,   PCNA↓,1,   pRB↑,1,   selectivity↑,1,   SOD↑,1,   Vim↓,1,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 27

Results for Effect on Normal Cells:
Casp3↓,1,   Catalase↑,1,   DNAdam↓,1,   ERK↑,1,   GSH↓,1,   HO-1↑,1,   NRF2↑,1,   Prx↑,1,   radioP↑,1,   ROS↓,1,   SOD↑,1,  
Total Targets: 11

Scientific Paper Hit Count for: ERK, ERK signaling
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:36  Target#:105  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page