condition found
Features: |
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha). The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides). -The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine. Ashwagandha is an herb that may reduce stress, anxiety, and insomnia. *-Ashwagandha is often characterized as an antioxidant. -Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity. Pathways: -Induction of Apoptosis and ROS Generation -Hsp90 Inhibition and Proteasomal Degradation Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM). In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight. - General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily. - 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001. - Ashwagandha Pure 400mg/capsule is available from mcsformulas.com. -Note half-life 4-6 hrs?. BioAv Pathways: - well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Chemokine Receptor Type 4 (CXCR4) is a G protein-coupled receptor that plays a significant role in various physiological processes, including immune responses, hematopoiesis, and organ development. It is also implicated in cancer biology, where it has been associated with tumor progression, metastasis, and the tumor microenvironment. CXCR4 is often overexpressed in various types of cancers, including breast, lung, prostate, and pancreatic cancers. Its activation can promote tumor cell proliferation and survival. -CXCR4 proteins associated with metastasis |
3168- | Ash,  |   | Withaferin A targeting both cancer stem cells and metastatic cancer stem cells in the UP-LN1 carcinoma cell model |
- | in-vitro, | Var, | NA |
3169- | Ash,  |   | Withaferin A blocks formation of IFN-γ-induced metastatic cancer stem cells through inhibition of the CXCR4/CXCL12 pathway in the UP-LN1 carcinoma cell model |
- | in-vitro, | GC, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:36 Target#:79 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid