condition found tbRes List
Ash, Ashwagandha: Click to Expand ⟱
Features:
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha).
The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides).
-The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine.
Ashwagandha is an herb that may reduce stress, anxiety, and insomnia.
*-Ashwagandha is often characterized as an antioxidant.
-Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity.
Pathways:
-Induction of Apoptosis and ROS Generation
-Hsp90 Inhibition and Proteasomal Degradation

Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM).
In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight.
- General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily.
- 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001.
- Ashwagandha Pure 400mg/capsule is available from mcsformulas.com.

-Note half-life 4-6 hrs?.
BioAv
Pathways:
- well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


OXPHOS, Oxidative phosphorylation: Click to Expand ⟱
Source:
Type:
Oxidative phosphorylation (or phosphorylation) is the fourth and final step in cellular respiration.
Alterations in phosphorylation pathways result in serious outcomes in cancer. Many signalling pathways including Tyrosine kinase, MAP kinase, Cadherin-catenin complex, Cyclin-dependent kinase etc. are major players of the cell cycle and deregulation in their phosphorylation-dephosphorylation cascade has been shown to be manifested in the form of various types of cancers.
Many tumors exhibit a well-known metabolic shift known as the Warburg effect, where glycolysis is favored over OxPhos even in the presence of oxygen. However, this is not universal.
Many cancers, including certain subpopulations like cancer stem cells, still rely on OXPHOS for energy production, biosynthesis, and survival.

– In several cancers, especially during metastasis or in tumors with high metabolic plasticity, OxPhos can remain active or even be upregulated to meet energy demands.

In some cancers, high OxPhos activity correlates with aggressive features, resistance to standard therapies, and poor outcomes, particularly when tumor cells exploit mitochondrial metabolism for survival and metastasis.

– Conversely, low OxPhos activity can be associated with a reliance on glycolysis, which is also linked with rapid tumor growth and certain adverse prognostic features.

Inhibiting oxidative phosphorylation is not a universal strategy against all cancers. Targeting OXPHOS can potentially disrupt the metabolic flexibility of cancer cells, leading to their death or making them more susceptible to other treatments.
Since normal cells also rely on OXPHOS, inhibitors must be carefully targeted to avoid significant toxicity to healthy tissues.
Not all tumors are the same. Some may be more glycolytic, while others depend more on mitochondrial metabolism. Therefore, metabolic profiling of tumors is crucial before adopting this strategy. Inhibiting OXPHOS is being explored in combination with other treatments (such as chemo- or immunotherapies) to improve efficacy and overcome resistance.

In cancer cells, metabolic reprogramming is a hallmark where cells often rely on glycolysis (known as the Warburg effect); however, many cancer types also depend on OXPHOS for energy production and survival. Targeting OXPHOS(using inhibitor) to increase the production of reactive oxygen species (ROS) can selectively induce oxidative stress and cell death in cancer cells.

-One side effect of increased OXPHOS is the production of reactive oxygen species (ROS).
-Many cancer cells therefore simultaneously upregulate antioxidant systems to mitigate the damaging effects of elevated ROS.
-Increase in oxidative phosphorylation can inhibit cancer growth.


Scientific Papers found: Click to Expand⟱
3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ)
*cardioP↑, cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis.
*AMPK↑,
*BioAv↝, The oral bioavailability was found to be 32.4 ± 4.8% after 5 mg/kg intravenous and 10 mg/kg oral WA administration.
*Half-Life↝, The stability studies of WA in gastric fluid, liver microsomes, and intestinal microflora solution showed similar results in male rats and humans with a half-life of 5.6 min.
*Half-Life↝, WA reduced quickly, and 27.1% left within 1 h
*Dose↑, WA showed that formulation at dose 4800 mg having equivalent to 216 mg of WA, was tolerated well without showing any dose-limiting toxicity.
*chemoP↑, Here, we discuss the chemo-preventive effects of WA on multiple organs.
IL6↓, attenuates IL-6 in inducible (MCF-7 and MDA-MB-231)
STAT3↓, WA displayed downregulation of STAT3 transcriptional activity
ROS↓, associated with reactive oxygen species (ROS) generation, resulted in apoptosis of cells. The WA treatment decreases the oxidative phosphorylation
OXPHOS↓,
PCNA↓, uppresses human breast cells’ proliferation by decreasing the proliferating cell nuclear antigen (PCNA) expression
LDH↓, WA treatment decreases the lactate dehydrogenase (LDH) expression, increases AMP protein kinase activation, and reduces adenosine triphosphate
AMPK↑,
TumCCA↑, (SKOV3 andCaOV3), WA arrest the G2/M phase cell cycle
NOTCH3↓, It downregulated the Notch-3/Akt/Bcl-2 signaling mediated cell survival, thereby causing caspase-3 stimulation, which induces apoptosis.
Akt↓,
Bcl-2↓,
Casp3↑,
Apoptosis↑,
eff↑, Withaferin-A, combined with doxorubicin, and cisplatin at suboptimal dose generates ROS and causes cell death
NF-kB↓, reduces the cytosolic and nuclear levels of NF-κB-related phospho-p65 cytokines in xenografted tumors
CSCs↓, WA can be used as a pharmaceutical agent that effectively kills cancer stem cells (CSCs).
HSP90↓, WA inhibit Hsp90 chaperone activity, disrupting Hsp90 client proteins, thus showing antiproliferative effects
PI3K↓, WA inhibited PI3K/AKT pathway.
FOXO3↑, Par-4 and FOXO3A proapoptotic proteins were increased in Pten-KO mice supplemented with WA.
β-catenin/ZEB1↓, decreased pAKT expression and the β-catenin and N-cadherin epithelial-to-mesenchymal transition markers in WA-treated tumors control
N-cadherin↓,
EMT↓,
FASN↓, WA intraperitoneal administration (0.1 mg) resulted in significant suppression of circulatory free fatty acid and fatty acid synthase expression, ATP citrate lyase,
ACLY↓,
ROS↑, WA generates ROS followed by the activation of Nrf2, HO-1, NQO1 pathways, and upregulating the expression of the c-Jun-N-terminal kinase (JNK)
NRF2↑,
HO-1↑,
NQO1↑,
JNK↑,
mTOR↓, suppressing the mTOR/STAT3 pathway
neuroP↑, neuroprotective ability of WA (50 mg/kg b.w)
*TNF-α↓, WA attenuate the levels of neuroinflammatory mediators (TNF-α, IL-1β, and IL-6)
*IL1β↓,
*IL6↓,
*IL8↓, WA decreases the pro-inflammatory cytokines (IL-6, TNFα, IL-8, IL-18)
*IL18↓,
RadioS↑, radiosensitizing combination effect of WA and hyperthermia (HT) or radiotherapy (RT)
eff↑, WA and cisplatin at suboptimal dose generates ROS and causes cell death [41]. The actions of this combination is attributed by eradicating cells, revealing markers of cancer stem cells like CD34, CD44, Oct4, CD24, and CD117

1355- Ash,    Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Mediated by Reactive Oxygen Species
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, HMEC
eff↑, WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). ****
mt-ROS↑, WA-induced apoptosis in human breast cancer cells is mediated by mitochondria-derived ROS
mitResp↓,
OXPHOS↓, WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity.
compIII↑,
BAX↑,
Bak↑,
other↓, Cu,Zn-Superoxide dismutase (Cu,Zn-SOD) overexpression confers protection against WA-induced ROS production and apoptosis
ATP∅, steady-state levels of ATP were unaffected by WA treatment in either cell line
*ROS∅, but not in a normal human mammary epithelial cell line (HMEC). WA treatment caused ROS production in breast cancer cells, HMEC were resistant to pro-oxidant effect of this agent.

1142- Ash,    Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer
- Review, BC, MCF-7 - NA, BC, MDA-MB-231 - NA, Nor, HMEC
Apoptosis↑,
ROS↑, anti-cancer effect of WA was significantly attenuated in the presence of anti-oxidants,
DNAdam↑,
OXPHOS↓, WA inhibits oxidative phosphorylation (OXPHOS) in Complex III, accompanied by apoptotic release of DNA fragments associated with histones in the cytosol
*ROS∅, WA shows high selectivity, causing ROS production only in MDA-MB-231 and MCF-7 cells, but not in the normal human mammary epithelial cell line (HMEC)
Bcl-2↓,
XIAP↓,
survivin↓,
DR5↑,
IKKα↓,
NF-kB↓,
selectivity↑, Moreover, WA shows high selectivity, causing ROS production only in MDA-MB-231 and MCF-7 cells, but not in the normal human mammary epithelial cell line (HMEC)
*ROS∅, Moreover, WA shows high selectivity, causing ROS production only in MDA-MB-231 and MCF-7 cells, but not in the normal human mammary epithelial cell line (HMEC)
eff↓, the anti-cancer effect of WA was significantly attenuated in the presence of anti-oxidants, as it has been shown that ectopic expression of Cu and Zn-superoxide dismutase (SOD) significantly weakens its apoptotic properties
Paraptosis↑, WA promotes death in both MCF-7 and MDA-MB-231 cell lines through paraptosis through the action of ROS


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
ACLY↓,1,   Akt↓,1,   AMPK↑,1,   Apoptosis↑,2,   ATP∅,1,   Bak↑,1,   BAX↑,1,   Bcl-2↓,2,   Casp3↑,1,   compIII↑,1,   CSCs↓,1,   DNAdam↑,1,   DR5↑,1,   eff↓,1,   eff↑,3,   EMT↓,1,   FASN↓,1,   FOXO3↑,1,   HO-1↑,1,   HSP90↓,1,   IKKα↓,1,   IL6↓,1,   JNK↑,1,   LDH↓,1,   mitResp↓,1,   mTOR↓,1,   N-cadherin↓,1,   neuroP↑,1,   NF-kB↓,2,   NOTCH3↓,1,   NQO1↑,1,   NRF2↑,1,   other↓,1,   OXPHOS↓,3,   Paraptosis↑,1,   PCNA↓,1,   PI3K↓,1,   RadioS↑,1,   ROS↓,1,   ROS↑,2,   mt-ROS↑,1,   selectivity↑,1,   STAT3↓,1,   survivin↓,1,   TumCCA↑,1,   XIAP↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 47

Results for Effect on Normal Cells:
AMPK↑,1,   BioAv↝,1,   cardioP↑,1,   chemoP↑,1,   Dose↑,1,   Half-Life↝,2,   IL18↓,1,   IL1β↓,1,   IL6↓,1,   IL8↓,1,   p‑PPARγ↓,1,   ROS∅,3,   TNF-α↓,1,  
Total Targets: 13

Scientific Paper Hit Count for: OXPHOS, Oxidative phosphorylation
3 Ashwagandha
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:36  Target#:230  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page