condition found
Features: |
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha). The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides). -The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine. Ashwagandha is an herb that may reduce stress, anxiety, and insomnia. *-Ashwagandha is often characterized as an antioxidant. -Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity. Pathways: -Induction of Apoptosis and ROS Generation -Hsp90 Inhibition and Proteasomal Degradation Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM). In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight. - General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily. - 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001. - Ashwagandha Pure 400mg/capsule is available from mcsformulas.com. -Note half-life 4-6 hrs?. BioAv Pathways: - well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Oxidative phosphorylation (or phosphorylation) is the fourth and final step in cellular respiration. Alterations in phosphorylation pathways result in serious outcomes in cancer. Many signalling pathways including Tyrosine kinase, MAP kinase, Cadherin-catenin complex, Cyclin-dependent kinase etc. are major players of the cell cycle and deregulation in their phosphorylation-dephosphorylation cascade has been shown to be manifested in the form of various types of cancers. Many tumors exhibit a well-known metabolic shift known as the Warburg effect, where glycolysis is favored over OxPhos even in the presence of oxygen. However, this is not universal. Many cancers, including certain subpopulations like cancer stem cells, still rely on OXPHOS for energy production, biosynthesis, and survival. – In several cancers, especially during metastasis or in tumors with high metabolic plasticity, OxPhos can remain active or even be upregulated to meet energy demands. In some cancers, high OxPhos activity correlates with aggressive features, resistance to standard therapies, and poor outcomes, particularly when tumor cells exploit mitochondrial metabolism for survival and metastasis. – Conversely, low OxPhos activity can be associated with a reliance on glycolysis, which is also linked with rapid tumor growth and certain adverse prognostic features. Inhibiting oxidative phosphorylation is not a universal strategy against all cancers. Targeting OXPHOS can potentially disrupt the metabolic flexibility of cancer cells, leading to their death or making them more susceptible to other treatments. Since normal cells also rely on OXPHOS, inhibitors must be carefully targeted to avoid significant toxicity to healthy tissues. Not all tumors are the same. Some may be more glycolytic, while others depend more on mitochondrial metabolism. Therefore, metabolic profiling of tumors is crucial before adopting this strategy. Inhibiting OXPHOS is being explored in combination with other treatments (such as chemo- or immunotherapies) to improve efficacy and overcome resistance. In cancer cells, metabolic reprogramming is a hallmark where cells often rely on glycolysis (known as the Warburg effect); however, many cancer types also depend on OXPHOS for energy production and survival. Targeting OXPHOS(using inhibitor) to increase the production of reactive oxygen species (ROS) can selectively induce oxidative stress and cell death in cancer cells. -One side effect of increased OXPHOS is the production of reactive oxygen species (ROS). -Many cancer cells therefore simultaneously upregulate antioxidant systems to mitigate the damaging effects of elevated ROS. -Increase in oxidative phosphorylation can inhibit cancer growth. |
3166- | Ash,  |   | Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives |
- | Review, | Var, | NA |
1355- | Ash,  |   | Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Mediated by Reactive Oxygen Species |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | HMEC |
1142- | Ash,  |   | Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer |
- | Review, | BC, | MCF-7 | - | NA, | BC, | MDA-MB-231 | - | NA, | Nor, | HMEC |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:36 Target#:230 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid