condition found tbRes List
Ash, Ashwagandha: Click to Expand ⟱
Features:
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha).
The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides).
-The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine.
Ashwagandha is an herb that may reduce stress, anxiety, and insomnia.
*-Ashwagandha is often characterized as an antioxidant.
-Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity.
Pathways:
-Induction of Apoptosis and ROS Generation
-Hsp90 Inhibition and Proteasomal Degradation

Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM).
In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight.
- General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily.
- 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001.
- Ashwagandha Pure 400mg/capsule is available from mcsformulas.com.

-Note half-life 4-6 hrs?.
BioAv
Pathways:
- well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


β-catenin/ZEB1, β-catenin/ZEB1: Click to Expand ⟱
Source: HalifaxProj (inactivate)
Type:
β-catenin and ZEB1 are two important proteins that play significant roles in cancer biology, particularly in the processes of cell adhesion, epithelial-mesenchymal transition (EMT), and tumor progression.
β-catenin is a key component of the Wnt signaling pathway, which is crucial for cell proliferation, differentiation, and survival. It also plays a role in cell-cell adhesion by linking cadherins to the actin cytoskeleton.
Role in Cancer: ZEB1 is often upregulated in cancer and is associated with increased invasiveness and metastasis. It can repress epithelial markers (like E-cadherin) and promote mesenchymal markers (like N-cadherin and vimentin), facilitating the transition to a more aggressive cancer phenotype.

(MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis.


Scientific Papers found: Click to Expand⟱
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, withaferin A suppressed cell proliferation in prostate, ovarian, breast, gastric, leukemic, and melanoma cancer cells and osteosarcomas by stimulating the inhibition of the cell cycle at several stages, including G0/G1 [86], G2, and M phase
H3↑, via the upregulation of phosphorylated Aurora B, H3, p21, and Wee-1, and the downregulation of A2, B1, and E2 cyclins, Cdc2 (Tyr15), phosphorylated Chk1, and Chk2 in DU-145 and PC-3 prostate cancer cells.
P21↑,
cycA1↓,
CycB↓,
cycE↓,
CDC2↓,
CHK1↓,
Chk2↓,
p38↑, nitiated cell death in the leukemia cells by increasing the expression of p38 mitogen-activated protein kinases (MAPK)
MAPK↑,
E6↓, educed the expression of human papillomavirus E6/E7 oncogenes in cervical cancer cells
E7↓,
P53↑, restored the p53 pathway causing the apoptosis of cervical cancer cells.
Akt↓, oral dose of 3–5 mg/kg withaferin A attenuated the activation of Akt and stimulated Forkhead Box-O3a (FOXO3a)-mediated prostate apoptotic response-4 (Par-4) activation,
FOXO3↑,
ROS↑, the generation of reactive oxygen species, histone H2AX phosphorylation, and mitochondrial membrane depolarization, indicating that withaferin A can cause the oxidative stress-mediated killing of oral cancer cells [
γH2AX↑,
MMP↓,
mitResp↓, withaferin A inhibited the expansion of MCF-7 and MDA-MB-231 human breast cancer cells by ROS production, owing to mitochondrial respiration inhibition
eff↑, combination treatment of withaferin A and hyperthermia induced the death of HeLa cells via a decrease in the mitochondrial transmembrane potential and the downregulation of the antiapoptotic protein myeloid-cell leukemia 1 (MCL-1)
TumCD↑,
Mcl-1↓,
ER Stress↑, . Withaferin A also attenuated the development of glioblastoma multiforme (GBM), both in vitro and in vivo, by inducing endoplasmic reticulum stress via activating the transcription factor 4-ATF3-C/EBP homologous protein (ATF4-ATF3-CHOP)
ATF4↑,
ATF3↑,
CHOP↑,
NOTCH↓, modulating the Notch-1 signaling pathway and the downregulation of Akt/NF-κB/Bcl-2 . withaferin A inhibited the Notch signaling pathway
NF-kB↓,
Bcl-2↓,
STAT3↓, Withaferin A also constitutively inhibited interleukin-6-induced phosphorylation of STAT3,
CDK1↓, lowering the levels of cyclin-dependent Cdk1, Cdc25C, and Cdc25B proteins,
β-catenin/ZEB1↓, downregulation of p-Akt expression, β-catenin, N-cadherin and epithelial to the mesenchymal transition (EMT) markers
N-cadherin↓,
EMT↓,
Cyt‑c↑, depolarization and production of ROS, which led to the release of cytochrome c into the cytosol,
eff↑, combinatorial effect of withaferin A and sulforaphane was also observed in MDA-MB-231 and MCF-7 breast cancer cells, with a dramatic reduction of the expression of the antiapoptotic protein Bcl-2 and an increase in the pro-apoptotic Bax level, thus p
CDK4↓, downregulates the levels of cyclin D1, CDK4, and pRB, and upregulates the levels of E2F mRNA and tumor suppressor p21, independently of p53
p‑RB1↓,
PARP↑, upregulation of Bax and cytochrome c, downregulation of Bcl-2, and activation of PARP, caspase-3, and caspase-9 cleavage
cl‑Casp3↑,
cl‑Casp9↑,
NRF2↑, withaferin A binding with Keap1 causes an increase in the nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels, which in turn, regulates the expression of antioxidant proteins that can protect the cells from oxidative stress.
ER-α36↓, Decreased ER-α
LDHA↓, inhibited growth, LDHA activity, and apoptotic induction
lipid-P↑, induction of oxidative stress, increased lipid peroxidation,
AP-1↓, anti-inflammatory qualities of withaferin A are specifically attributed to its inhibition of pro-inflammatory molecules, α-2 macroglobulin, NF-κB, activator protein 1 (AP-1), and cyclooxygenase-2 (COX-2) inhibition,
COX2↓,
RenoP↑, showing strong evidence of the renoprotective potential of withaferin A due to its anti-inflammatory activity
PDGFR-BB↓, attenuating the BB-(PDGF-BB) platelet growth factor
SIRT3↑, by increasing the sirtuin3 (SIRT3) expression
MMP2↓, withaferin A inhibits matrix metalloproteinase-2 (MMP-2) and MMP-9,
MMP9↓,
NADPH↑, but also provokes mRNA stimulation for a set of antioxidant genes, such as NADPH quinone dehydrogenase 1 (NQO1), glutathione-disulfide reductase (GSR), Nrf2, heme oxygenase 1 (HMOX1),
NQO1↑,
GSR↑,
HO-1↑,
*SOD2↑, cardiac ischemia-reperfusion injury model. Withaferin A triggered the upregulation of superoxide dismutase SOD2, SOD3, and peroxiredoxin 1(Prdx-1).
*Prx↑,
*Casp3?, and ameliorated cardiomyocyte caspase-3 activity
eff↑, combination with doxorubicin (DOX), is also responsible for the excessive generation of ROS
Snail↓, inhibition of EMT markers, such as Snail, Slug, β-catenin, and vimentin.
Slug↓,
Vim↓,
CSCs↓, highly effective in eliminating cancer stem cells (CSC) that expressed cell surface markers, such as CD24, CD34, CD44, CD117, and Oct4 while downregulating Notch1, Hes1, and Hey1 genes;
HEY1↓,
MMPs↓, downregulate the expression of MMPs and VEGF, as well as reduce vimentin, N-cadherin cytoskeleton proteins,
VEGF↓,
uPA↓, and protease u-PA involved in the cancer cell metastasis
*toxicity↓, A was orally administered to Wistar rats at a dose of 2000 mg/kg/day and had no adverse effects on the animals
CDK2↓, downregulated the activation of Bcl-2, CDK2, and cyclin D1
CDK4↓, Another study also demonstrated the inhibition of Hsp90 by withaferin A in a pancreatic cancer cell line through the degradation of Akt, cyclin-dependent kinase 4 Cdk4,
HSP90↓,

3162- Ash,    Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
- Review, Var, NA
lipid-P↓, Oral cancer 20 mg/Kg ↓Lipid peroxidation : ↑SOD, glutathione peroxidase, p53, Bcl-2
SOD↑,
GPx↑,
P53↑,
Bcl-2↑,
E6↓, Cervival cancer 8mg/Kg ↓E6, E7: ↑p53, pRb, Cyclin B1, P34 Cdc2, p21, PCNA
E7↓,
pRB↑,
CycB↑,
CDC2↑,
P21↑,
PCNA↓,
ALDH1A1↓, Mammary cancer 0-1 mg/mouse (5-10) ↓Mammosphere number, ALDH1 activity. Vimentin, glycolysis
Vim↓,
Glycolysis↓,
cMyc↓, Mesotheliome cancer 5 mg/Kg ↓Proteasomal chymotrypsin, C-Myc : ↑ Bax, CARP-1
BAX↑,
NF-kB↓,
Casp3↑, caspase-3 activation
CHOP↑, WA is found to increase activation of Elk1 and CHOP (CCAAT-enhancer-binding protein homologous protein) by RSK, as well as up-regulation of DR5 by selectively suppressing pathway ERK
DR5↑,
ERK↓,
Wnt↓, WA inhibits Wnt/β-catenin pathway via suppression of AKT signalling, which inhibits cancer cell motility and sensitises for cell death
β-catenin/ZEB1↓,
Akt↓,
HSP90↓, WA-dependent inhibition of heat shock protein (HSP) chaperone functions. WA inhibits the activity of HSP90-mediated function

3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ)
*cardioP↑, cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis.
*AMPK↑,
*BioAv↝, The oral bioavailability was found to be 32.4 ± 4.8% after 5 mg/kg intravenous and 10 mg/kg oral WA administration.
*Half-Life↝, The stability studies of WA in gastric fluid, liver microsomes, and intestinal microflora solution showed similar results in male rats and humans with a half-life of 5.6 min.
*Half-Life↝, WA reduced quickly, and 27.1% left within 1 h
*Dose↑, WA showed that formulation at dose 4800 mg having equivalent to 216 mg of WA, was tolerated well without showing any dose-limiting toxicity.
*chemoP↑, Here, we discuss the chemo-preventive effects of WA on multiple organs.
IL6↓, attenuates IL-6 in inducible (MCF-7 and MDA-MB-231)
STAT3↓, WA displayed downregulation of STAT3 transcriptional activity
ROS↓, associated with reactive oxygen species (ROS) generation, resulted in apoptosis of cells. The WA treatment decreases the oxidative phosphorylation
OXPHOS↓,
PCNA↓, uppresses human breast cells’ proliferation by decreasing the proliferating cell nuclear antigen (PCNA) expression
LDH↓, WA treatment decreases the lactate dehydrogenase (LDH) expression, increases AMP protein kinase activation, and reduces adenosine triphosphate
AMPK↑,
TumCCA↑, (SKOV3 andCaOV3), WA arrest the G2/M phase cell cycle
NOTCH3↓, It downregulated the Notch-3/Akt/Bcl-2 signaling mediated cell survival, thereby causing caspase-3 stimulation, which induces apoptosis.
Akt↓,
Bcl-2↓,
Casp3↑,
Apoptosis↑,
eff↑, Withaferin-A, combined with doxorubicin, and cisplatin at suboptimal dose generates ROS and causes cell death
NF-kB↓, reduces the cytosolic and nuclear levels of NF-κB-related phospho-p65 cytokines in xenografted tumors
CSCs↓, WA can be used as a pharmaceutical agent that effectively kills cancer stem cells (CSCs).
HSP90↓, WA inhibit Hsp90 chaperone activity, disrupting Hsp90 client proteins, thus showing antiproliferative effects
PI3K↓, WA inhibited PI3K/AKT pathway.
FOXO3↑, Par-4 and FOXO3A proapoptotic proteins were increased in Pten-KO mice supplemented with WA.
β-catenin/ZEB1↓, decreased pAKT expression and the β-catenin and N-cadherin epithelial-to-mesenchymal transition markers in WA-treated tumors control
N-cadherin↓,
EMT↓,
FASN↓, WA intraperitoneal administration (0.1 mg) resulted in significant suppression of circulatory free fatty acid and fatty acid synthase expression, ATP citrate lyase,
ACLY↓,
ROS↑, WA generates ROS followed by the activation of Nrf2, HO-1, NQO1 pathways, and upregulating the expression of the c-Jun-N-terminal kinase (JNK)
NRF2↑,
HO-1↑,
NQO1↑,
JNK↑,
mTOR↓, suppressing the mTOR/STAT3 pathway
neuroP↑, neuroprotective ability of WA (50 mg/kg b.w)
*TNF-α↓, WA attenuate the levels of neuroinflammatory mediators (TNF-α, IL-1β, and IL-6)
*IL1β↓,
*IL6↓,
*IL8↓, WA decreases the pro-inflammatory cytokines (IL-6, TNFα, IL-8, IL-18)
*IL18↓,
RadioS↑, radiosensitizing combination effect of WA and hyperthermia (HT) or radiotherapy (RT)
eff↑, WA and cisplatin at suboptimal dose generates ROS and causes cell death [41]. The actions of this combination is attributed by eradicating cells, revealing markers of cancer stem cells like CD34, CD44, Oct4, CD24, and CD117


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
ACLY↓,1,   Akt↓,3,   ALDH1A1↓,1,   AMPK↑,1,   AP-1↓,1,   Apoptosis↑,1,   ATF3↑,1,   ATF4↑,1,   BAX↑,1,   Bcl-2↓,2,   Bcl-2↑,1,   Casp3↑,2,   cl‑Casp3↑,1,   cl‑Casp9↑,1,   CDC2↓,1,   CDC2↑,1,   CDK1↓,1,   CDK2↓,1,   CDK4↓,2,   CHK1↓,1,   Chk2↓,1,   CHOP↑,2,   cMyc↓,1,   COX2↓,1,   CSCs↓,2,   cycA1↓,1,   CycB↓,1,   CycB↑,1,   cycE↓,1,   Cyt‑c↑,1,   DR5↑,1,   E6↓,2,   E7↓,2,   eff↑,5,   EMT↓,2,   ER Stress↑,1,   ER-α36↓,1,   ERK↓,1,   FASN↓,1,   FOXO3↑,2,   Glycolysis↓,1,   GPx↑,1,   GSR↑,1,   H3↑,1,   HEY1↓,1,   HO-1↑,2,   HSP90↓,3,   IL6↓,1,   JNK↑,1,   LDH↓,1,   LDHA↓,1,   lipid-P↓,1,   lipid-P↑,1,   MAPK↑,1,   Mcl-1↓,1,   mitResp↓,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mTOR↓,1,   N-cadherin↓,2,   NADPH↑,1,   neuroP↑,1,   NF-kB↓,3,   NOTCH↓,1,   NOTCH3↓,1,   NQO1↑,2,   NRF2↑,2,   OXPHOS↓,1,   P21↑,2,   p38↑,1,   P53↑,2,   PARP↑,1,   PCNA↓,2,   PDGFR-BB↓,1,   PI3K↓,1,   pRB↑,1,   RadioS↑,1,   p‑RB1↓,1,   RenoP↑,1,   ROS↓,1,   ROS↑,2,   SIRT3↑,1,   Slug↓,1,   Snail↓,1,   SOD↑,1,   STAT3↓,2,   TumCCA↑,2,   TumCD↑,1,   uPA↓,1,   VEGF↓,1,   Vim↓,2,   Wnt↓,1,   β-catenin/ZEB1↓,3,   γH2AX↑,1,  
Total Targets: 96

Results for Effect on Normal Cells:
AMPK↑,1,   BioAv↝,1,   cardioP↑,1,   Casp3?,1,   chemoP↑,1,   Dose↑,1,   Half-Life↝,2,   IL18↓,1,   IL1β↓,1,   IL6↓,1,   IL8↓,1,   p‑PPARγ↓,1,   Prx↑,1,   SOD2↑,1,   TNF-α↓,1,   toxicity↓,1,  
Total Targets: 16

Scientific Paper Hit Count for: β-catenin/ZEB1, β-catenin/ZEB1
3 Ashwagandha
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:36  Target#:342  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page