condition found tbRes List
Ash, Ashwagandha: Click to Expand ⟱
Features:
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha).
The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides).
-The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine.
Ashwagandha is an herb that may reduce stress, anxiety, and insomnia.
*-Ashwagandha is often characterized as an antioxidant.
-Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity.
Pathways:
-Induction of Apoptosis and ROS Generation
-Hsp90 Inhibition and Proteasomal Degradation

Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM).
In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight.
- General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily.
- 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001.
- Ashwagandha Pure 400mg/capsule is available from mcsformulas.com.

-Note half-life 4-6 hrs?.
BioAv
Pathways:
- well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCI, Tumor Cell invasion: Click to Expand ⟱
Source:
Type:
Tumor cell invasion is a critical process in cancer progression and metastasis, where cancer cells spread from the primary tumor to surrounding tissues and distant organs. This process involves several key steps and mechanisms:

1.Epithelial-Mesenchymal Transition (EMT): Many tumors originate from epithelial cells, which are typically organized in layers. During EMT, these cells lose their epithelial characteristics (such as cell-cell adhesion) and gain mesenchymal traits (such as increased motility). This transition is crucial for invasion.

2.Degradation of Extracellular Matrix (ECM): Tumor cells secrete enzymes, such as matrix metalloproteinases (MMPs), that degrade the ECM, allowing cancer cells to invade surrounding tissues. This degradation facilitates the movement of cancer cells through the tissue.

3.Cell Migration: Once the ECM is degraded, cancer cells can migrate. They often use various mechanisms, including amoeboid movement and mesenchymal migration, to move through the tissue. This migration is influenced by various signaling pathways and the tumor microenvironment.

4.Angiogenesis: As tumors grow, they require a blood supply to provide nutrients and oxygen. Tumor cells can stimulate the formation of new blood vessels (angiogenesis) through the release of growth factors like vascular endothelial growth factor (VEGF). This not only supports tumor growth but also provides a route for cancer cells to enter the bloodstream.

5.Invasion into Blood Vessels (Intravasation): Cancer cells can invade nearby blood vessels, allowing them to enter the circulatory system. This step is crucial for metastasis, as it enables cancer cells to travel to distant sites in the body.

6.Survival in Circulation: Once in the bloodstream, cancer cells must survive the immune response and the shear stress of blood flow. They can form clusters with platelets or other cells to evade detection.

7.Extravasation and Colonization: After traveling through the bloodstream, cancer cells can exit the circulation (extravasation) and invade new tissues. They may then establish secondary tumors (metastases) in distant organs.

8.Tumor Microenvironment: The surrounding microenvironment plays a significant role in tumor invasion. Factors such as immune cells, fibroblasts, and signaling molecules can either promote or inhibit invasion and metastasis.


Scientific Papers found: Click to Expand⟱
3172- Ash,    Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
Keap1↑, Notably, Withaferin A elevated Keap1 expression to mitigate Nrf2 signaling activation-mediated epithelial to mesenchymal transition (EMT) and ferroptosis-related protein xCT expression
NRF2↓,
EMT↓, Withaferin A suppresses epithelial-to-mesenchymal transition (EMT) in non-small cell lung cancer
TumCP↓, Withaferin A restrains proliferation, invasion, and VM of hepatoma cells while preserving normal hepatocytes
TumCI↓,
selectivity↑, , treatment with Withaferin A ranging from 1 to 100 μM had little effect on cell viability of human normal liver cells (HL-7702 cells), indicating the little cytotoxicity on normal hepatocytes.
*toxicity↓,
ROS↑, Withaferin A strikingly enhanced ROS () and MDA levels (), but reduced the GSH levels (), indicating the induction of ferroptosis by Withaferin A
MDA↑,
GSH↓,
Ferroptosis↑,

3174- Ash,    Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC
- in-vitro, HCC, HepG2 - in-vitro, HCC, Hep3B - in-vitro, HCC, HUH7
NF-kB↓, We found that many of Nuclear factor kappa B (NF-κB), angiogenesis and inflammation associated proteins secretion is downregulated upon Withaferin A treatment.
angioG↓,
Inflam↓,
TumCP↓, uppressed the proliferation, migration, invasion, and anchorage-independent growth of these HCC cells.
TumCMig↓,
TumCI↓,
Sp1/3/4↓, Withaferin A inhibits NF-κB, Specificity protein 1 (Sp1) transcription factors, and downregulates Vascular Endothelial Growth Factor (VEGF) gene expression
VEGF↓,
angioG↓, Withaferin A (2.5 µM) treatment decreased the secretion of various angiogenesis-related markers, growth factors, and cytokines (Serpin F1(PEDF), uPA, PDGF-AA, Angiogenin, Endothelin-1, Macrophage migration inhibitory factor (MIF), PAI-1, MCP1, ICAM-1
uPA↓,
PDGF↓,
MCP1↓,
ICAM-1↓,
*NRF2↑, It also upregulates the Nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and protects from Acetaminophen-induced hepatotoxicity and liver injury
*hepatoP↑,

1173- Ash,    Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling
- in-vitro, EC, K1 - in-vitro, Nor, THESCs
TumCP↓,
*toxicity↓, comparatively lower toxicity against the THESCs normal cells
Apoptosis↑,
TumCCA↑, G2/M cell cycle arrest
TumCMig↓, 53%
TumCI↓, 40%
p‑SMAD2↓,
TGF-β↓,
*toxicity↓, Cytotoxicity of withaferin A was comparatively lower against normal THESCs endometrial cells (IC50 value of 76 µM) when compared to cancerous KLE cells.

1181- Ash,    Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCMig↓,
TumCI↓,
EMT↓,
p‑SMAD2↓,
p‑SMAD3↓,
p‑NF-kB↓,

1358- Ash,    Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms
- Review, Var, NA
TumCCA↑,
Apoptosis↑,
TumAuto↑,
Ferroptosis↑,
TumCP↓,
CSCs↓,
TumMeta↓,
EMT↓,
angioG↓,
Vim↓,
HSP90↓,
annexin II↓, annexin II proteins directly bind to WA
m-FAM72A↓,
BCR-ABL↓,
Mortalin↓,
NRF2↓,
cMYB↓,
ROS↑, WA inhibits proliferation through ROS-mediated intrinsic apoptosis
ChemoSen↑, WA and cisplatin, WA produced ROS, while cisplatin caused DNA damage, suggesting that lower doses of cisplatin combined with suboptimal doses of WA could achieve the same effect
eff↑, sulforaphane and WA showed synergistic effects on epigenetic modifiers and cell proliferation in breast cancer cells
ChemoSen↑, WA and sorafenib caused G2/M arrest in anaplastic and papillary thyroid cancer cells
ChemoSen↑, combination of WA and 5-FU executed PERK axis-mediated endoplasmic reticulum (ER) stress-induced autophagy and apoptosis
eff↑, WA and carnosol also exhibit a synergistic effect on pancreatic cancer
*BioAv↓, Saurabh by Saurabh et al and Tianming et al reported oral bioavailability values 1.8% and 32.4 ± 4.8%, respectively, in male rats.
ROCK1↓, In another study, WA reduces macrophage infiltration and inhibits the expression of protein tyrosine kinase-2 (Pyk2), rho-associated kinase 1 (ROCK1), and VEGF in a hepatocellular carcinoma xenograft model, thereby suppressing tumor invasion and angi
TumCI↓,
Sp1/3/4↓, Furthermore, WA exerts potent anti-angiogenic activity in vivo.174 In the Ehrlich ascites tumor model, WA exerts its anti-angiogenic activity by reducing the binding of the transcription factor specificity protein 1 (Sp1) to VEGF
VEGF↓, n another study, WA reduces macrophage infiltration and inhibits the expression of protein tyrosine kinase-2 (Pyk2), rho-associated kinase 1 (ROCK1), and VEGF in a hepatocellular carcinoma xenograft model, thereby suppressing tumor invasion and angio
Hif1a↓, Furthermore, WA suppresses the AK4-HIF-1α signaling axis and acts as a potent antimetastatic agent in lung cancer.Citation79
EGFR↓, WA synergistically inhibited wild-type epidermal growth factor receptor (EGFR) lung cancer cell viability


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
angioG↓,3,   annexin II↓,1,   Apoptosis↑,2,   BCR-ABL↓,1,   ChemoSen↑,3,   cMYB↓,1,   CSCs↓,1,   eff↑,2,   EGFR↓,1,   EMT↓,3,   m-FAM72A↓,1,   Ferroptosis↑,2,   GSH↓,1,   Hif1a↓,1,   HSP90↓,1,   ICAM-1↓,1,   Inflam↓,1,   Keap1↑,1,   MCP1↓,1,   MDA↑,1,   Mortalin↓,1,   NF-kB↓,1,   p‑NF-kB↓,1,   NRF2↓,2,   PDGF↓,1,   ROCK1↓,1,   ROS↑,2,   selectivity↑,1,   p‑SMAD2↓,2,   p‑SMAD3↓,1,   Sp1/3/4↓,2,   TGF-β↓,1,   TumAuto↑,1,   TumCCA↑,2,   TumCI↓,5,   TumCMig↓,3,   TumCP↓,4,   TumMeta↓,1,   uPA↓,1,   VEGF↓,2,   Vim↓,1,  
Total Targets: 41

Results for Effect on Normal Cells:
BioAv↓,1,   hepatoP↑,1,   NRF2↑,1,   toxicity↓,3,  
Total Targets: 4

Scientific Paper Hit Count for: TumCI, Tumor Cell invasion
5 Ashwagandha
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:36  Target#:324  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page