condition found
Features: |
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha). The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides). -The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine. Ashwagandha is an herb that may reduce stress, anxiety, and insomnia. *-Ashwagandha is often characterized as an antioxidant. -Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity. Pathways: -Induction of Apoptosis and ROS Generation -Hsp90 Inhibition and Proteasomal Degradation Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM). In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight. - General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily. - 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001. - Ashwagandha Pure 400mg/capsule is available from mcsformulas.com. -Note half-life 4-6 hrs?. BioAv Pathways: - well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues. Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance Factors that affect selectivity: 1. Ability of Cancer cells to preferentially absorb a product/drug -EPR-enhanced permeability and retention of cancer cells -nanoparticle formations/carriers may target cancer cells over normal cells -Liposomal formations. Also negatively/positively charged affects absorbtion 2. Product/drug effect may be different for normal vs cancer cells - hypoxia - transition metal content levels (iron/copper) change probability of fenton reaction. - pH levels - antiOxidant levels and defense levels 3. Bio-availability |
2003- | Ash,  |   | Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells |
- | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Nor, | TIG-1 | - | in-vitro, | PC, | LNCaP |
3172- | Ash,  |   | Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis |
- | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
1142- | Ash,  |   | Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer |
- | Review, | BC, | MCF-7 | - | NA, | BC, | MDA-MB-231 | - | NA, | Nor, | HMEC |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:36 Target#:1110 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid