condition found tbRes List
Ash, Ashwagandha: Click to Expand ⟱
Features:
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha).
The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides).
-The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine.
Ashwagandha is an herb that may reduce stress, anxiety, and insomnia.
*-Ashwagandha is often characterized as an antioxidant.
-Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity.
Pathways:
-Induction of Apoptosis and ROS Generation
-Hsp90 Inhibition and Proteasomal Degradation

Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM).
In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight.
- General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily.
- 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001.
- Ashwagandha Pure 400mg/capsule is available from mcsformulas.com.

-Note half-life 4-6 hrs?.
BioAv
Pathways:
- well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
2003- Ash,    Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145 - in-vitro, Nor, TIG-1 - in-vitro, PC, LNCaP
TumCD↑, We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells
selectivity↑, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD)
cFos↑, WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145, but not in LNCaP and TIG-1.
ROS↑, WA induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in normal fibroblasts
*ROS∅, but not in normal fibroblasts
HSP70/HSPA5↑,
Apoptosis↑, WA induces apoptosis mediated by ER stress
ER Stress↑,
TumCCA↑, WA induces autophagy in breast cancer cells, but the detailed mechanism remains elusive

3163- Ash,  Rad,    Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis
*radioP↑, Withaferin A (WA) protected only normal lymphocytes, but not cancer cells, against IR-induced apoptosis
selectivity↑,
*Casp3↓, WA treatment led to significant inhibition of IR-induced caspase-3 activation and decreased IR-induced DNA damage to lymphocytes and bone-marrow cells.
*DNAdam↓,
*ROS↓, WA reduced intracellular ROS and GSH levels
*GSH↓,
*NRF2↑, WA induced pro-survival transcription factor, Nrf-2, and expression of cytoprotective genes HO-1, catalase, SOD, peroxiredoxin-2 via ERK.
*HO-1↑,
*Catalase↑,
*SOD↑,
*Prx↑,
*ERK↑, Activated ERK promotes the nuclear translocation and activity of Nrf2

3172- Ash,    Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
Keap1↑, Notably, Withaferin A elevated Keap1 expression to mitigate Nrf2 signaling activation-mediated epithelial to mesenchymal transition (EMT) and ferroptosis-related protein xCT expression
NRF2↓,
EMT↓, Withaferin A suppresses epithelial-to-mesenchymal transition (EMT) in non-small cell lung cancer
TumCP↓, Withaferin A restrains proliferation, invasion, and VM of hepatoma cells while preserving normal hepatocytes
TumCI↓,
selectivity↑, , treatment with Withaferin A ranging from 1 to 100 μM had little effect on cell viability of human normal liver cells (HL-7702 cells), indicating the little cytotoxicity on normal hepatocytes.
*toxicity↓,
ROS↑, Withaferin A strikingly enhanced ROS () and MDA levels (), but reduced the GSH levels (), indicating the induction of ferroptosis by Withaferin A
MDA↑,
GSH↓,
Ferroptosis↑,

1142- Ash,    Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer
- Review, BC, MCF-7 - NA, BC, MDA-MB-231 - NA, Nor, HMEC
Apoptosis↑,
ROS↑, anti-cancer effect of WA was significantly attenuated in the presence of anti-oxidants,
DNAdam↑,
OXPHOS↓, WA inhibits oxidative phosphorylation (OXPHOS) in Complex III, accompanied by apoptotic release of DNA fragments associated with histones in the cytosol
*ROS∅, WA shows high selectivity, causing ROS production only in MDA-MB-231 and MCF-7 cells, but not in the normal human mammary epithelial cell line (HMEC)
Bcl-2↓,
XIAP↓,
survivin↓,
DR5↑,
IKKα↓,
NF-kB↓,
selectivity↑, Moreover, WA shows high selectivity, causing ROS production only in MDA-MB-231 and MCF-7 cells, but not in the normal human mammary epithelial cell line (HMEC)
*ROS∅, Moreover, WA shows high selectivity, causing ROS production only in MDA-MB-231 and MCF-7 cells, but not in the normal human mammary epithelial cell line (HMEC)
eff↓, the anti-cancer effect of WA was significantly attenuated in the presence of anti-oxidants, as it has been shown that ectopic expression of Cu and Zn-superoxide dismutase (SOD) significantly weakens its apoptotic properties
Paraptosis↑, WA promotes death in both MCF-7 and MDA-MB-231 cell lines through paraptosis through the action of ROS


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,2,   Bcl-2↓,1,   cFos↑,1,   DNAdam↑,1,   DR5↑,1,   eff↓,1,   EMT↓,1,   ER Stress↑,1,   Ferroptosis↑,1,   GSH↓,1,   HSP70/HSPA5↑,1,   IKKα↓,1,   Keap1↑,1,   MDA↑,1,   NF-kB↓,1,   NRF2↓,1,   OXPHOS↓,1,   Paraptosis↑,1,   ROS↑,3,   selectivity↑,4,   survivin↓,1,   TumCCA↑,1,   TumCD↑,1,   TumCI↓,1,   TumCP↓,1,   XIAP↓,1,  
Total Targets: 26

Results for Effect on Normal Cells:
Casp3↓,1,   Catalase↑,1,   DNAdam↓,1,   ERK↑,1,   GSH↓,1,   HO-1↑,1,   NRF2↑,1,   Prx↑,1,   radioP↑,1,   ROS↓,1,   ROS∅,3,   SOD↑,1,   toxicity↓,1,  
Total Targets: 13

Scientific Paper Hit Count for: selectivity, selectivity
4 Ashwagandha
1 Radiotherapy/Radiation
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:36  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page