condition found
Features: |
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha). The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides). -The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine. Ashwagandha is an herb that may reduce stress, anxiety, and insomnia. *-Ashwagandha is often characterized as an antioxidant. -Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity. Pathways: -Induction of Apoptosis and ROS Generation -Hsp90 Inhibition and Proteasomal Degradation Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM). In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight. - General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily. - 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001. - Ashwagandha Pure 400mg/capsule is available from mcsformulas.com. -Note half-life 4-6 hrs?. BioAv Pathways: - well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
(Also known as Hsp32 and HMOX1) HO-1 is the common abbreviation for the protein (heme oxygenase‑1) produced by the HMOX1 gene. HO-1 is an enzyme that plays a crucial role in various cellular processes, including the breakdown of heme, a toxic molecule. Research has shown that HO-1 is involved in the development and progression of cancer. -widely regarded as having antioxidant and cytoprotective effects -The overall activity of HO‑1 helps to reduce the pro‐oxidant load (by degrading free heme, a pro‑oxidant) and to generate molecules (like bilirubin) that can protect cells from oxidative damage Studies have found that HO-1 is overexpressed in various types of cancer, including lung, breast, colon, and prostate cancer. The overexpression of HO-1 in cancer cells can contribute to their survival and proliferation by: Reducing oxidative stress and inflammation Promoting angiogenesis (the formation of new blood vessels) Inhibiting apoptosis (programmed cell death) Enhancing cell migration and invasion When HO-1 is at a normal level, it mainly exerts an antioxidant effect, and when it is excessively elevated, it causes an accumulation of iron ions. A proper cellular level of HMOX1 plays an antioxidative function to protect cells from ROS toxicity. However, its overexpression has pro-oxidant effects to induce ferroptosis of cells, which is dependent on intracellular iron accumulation and increased ROS content upon excessive activation of HMOX1. -Curcumin Activates the Nrf2 pathway leading to HO‑1 induction; known for its anti‑inflammatory and antioxidant effects. -Resveratrol Induces HO‑1 via activation of SIRT1/Nrf2 signaling; exhibits antioxidant and cardioprotective properties. -Quercetin Activates Nrf2 and related antioxidant pathways; contributes to anti‑oxidative and anti‑inflammatory responses. -EGCG Promotes HO‑1 expression through activation of the Nrf2/ARE pathway; also exhibits anti‑inflammatory and anticancer properties. -Sulforaphane One of the most potent natural HO‑1 inducers; triggers Nrf2 nuclear translocation and upregulates a battery of phase II detoxifying enzymes. -Luteolin Induces HO‑1 via Nrf2 activation; may also exert anti‑inflammatory and neuroprotective effects in various cell models. -Apigenin Has been reported to induce HO‑1 expression partly via the MAPK and Nrf2 pathways; also known for anti‑inflammatory and anticancer activities. |
3156- | Ash,  |   | Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug |
- | Review, | Var, | NA |
3160- | Ash,  |   | Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal |
- | Review, | Var, | NA |
3161- | Ash,  |   | Withaferin A inhibits ferroptosis and protects against intracerebral hemorrhage |
- | in-vivo, | Stroke, | NA |
3166- | Ash,  |   | Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives |
- | Review, | Var, | NA |
3173- | Ash,  |   | Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma |
- | in-vitro, | neuroblastoma, | NA |
1357- | Ash,  |   | Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways |
- | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | GL26 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:36 Target#:597 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid