condition found tbRes List
Ash, Ashwagandha: Click to Expand ⟱
Features:
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha).
The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides).
-The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine.
Ashwagandha is an herb that may reduce stress, anxiety, and insomnia.
*-Ashwagandha is often characterized as an antioxidant.
-Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity.
Pathways:
-Induction of Apoptosis and ROS Generation
-Hsp90 Inhibition and Proteasomal Degradation

Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM).
In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight.
- General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily.
- 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001.
- Ashwagandha Pure 400mg/capsule is available from mcsformulas.com.

-Note half-life 4-6 hrs?.
BioAv
Pathways:
- well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Glycolysis, Glycolysis: Click to Expand ⟱
Source:
Type:
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP.
In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect.
Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses.

Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis.

Pathways:
-GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO

Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/
Alkaloids:
-Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine

Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol.

Non-flavonoid phenolic compounds:
Curcumin, Resveratrol, Gossypol, Tannic acid.

Terpenoids:
-Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin.

Quinones:
-Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin

Others:
-Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene.


Scientific Papers found: Click to Expand⟱
2388- Ash,    Withaferin A decreases glycolytic reprogramming in breast cancer
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-453
GlucoseCon↓, WA decreases the glucose uptake, lactate production and ATP generation by inhibiting the expression of key glycolytic enzymes i.e., GLUT1, HK2 and PKM2.
lactateProd↓,
ATP↓,
Glycolysis↓,
GLUT1↓,
HK2↓,
PKM2↓,
cMyc↓, WA decreases the protein expression of key glycolytic enzymes via downregulation of c-myc expression
Warburg↓, WA decreases protein expression of key glycolytic enzymes and Warburg effect via c-myc inhibition
cMyc↓,

3156- Ash,    Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug
- Review, Var, NA
MAPK↑, Figure 3
p38↑,
BAX↑,
BIM↑,
CHOP↑,
ROS↑,
DR5↑,
Apoptosis↑,
Ferroptosis↑,
GPx4↓,
BioAv↝, WA has a rapid oral absorption and reaches to peak plasma concentration of around 16.69 ± 4.02 ng/ml within 10 min after oral administration of Withania somnifera aqueous extract at dose of 1000 mg/kg, which is equivalent to 0.458 mg/kg of WA
HSP90↓, table 1 10uM) were found to inhibit the chaperone activity of HSP90
RET↓,
E6↓,
E7↓,
Akt↓,
cMET↓,
Glycolysis↓, by suppressing the glycolysis and tricarboxylic (TCA) cycle
TCA↓,
NOTCH1↓,
STAT3↓,
AP-1↓,
PI3K↓,
eIF2α↓,
HO-1↑,
TumCCA↑, WA (1--3 uM) have been reported to inhibit cell proliferation by inducing G2 and M phase cycle arrest inovarian, breast, prostate, gastric and myelodysplastic/leukemic cancer cells and osteosarcoma
CDK1↓, WA is able to decrease the cyclin-dependent kinase 1 (Cdk1) activity and prevent Cdk1/cyclin B1 complex formation, which are key steps in cell cycle progression
*hepatoP↑, A treatment (40 mg/kg) reduces acetaminophen-induced liver injury (AILI) in mouse models and decreases H 2O 2-induced glutathione (GSH) depletion and necrosis in hepatocyte
*GSH↑,
*NRF2↑, WA triggers an anti-oxidant response after acetaminophen overdose by enhancing hepatic transcription of the nuclear factor erythroid 2–related factor 2 (NRF2)-responsive gene
Wnt↓, indirectly inhibit Wnt
EMT↓, WA can also block tumor metastasis through reduced expression of epithelial mesenchymal transition (EMT) markers.
uPA↓, WA (700 nM) exert anti-meta-static activities in breast cancer cells through inhibition of the urokinase-type plasminogen activator (uPA) protease
CSCs↓, s WA (125-500 nM) suppress tumor sphere formation indicating that the self-renewal of CSC is abolished
Nanog↓, loss of these CSC-specific characteristics is reflected in the loss of typical stem cell markers such as ALDH1A, Nanog, Sox2, CD44 and CD24
SOX2↓,
CD44↓,
lactateProd↓, drop in lactate levels compared to control mice.
Iron↑, Furthermore, we found that WA elevates the levels of intracellular labile ferrous iron (Fe +2 ) through excessive activation of heme oxygenase-1 (HMOX1), which independently causes accumulation of toxic lipid radicals and ensuing ferroptosis
NF-kB↓, nhibition of NF-kB kinase signaling pathway

3162- Ash,    Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
- Review, Var, NA
lipid-P↓, Oral cancer 20 mg/Kg ↓Lipid peroxidation : ↑SOD, glutathione peroxidase, p53, Bcl-2
SOD↑,
GPx↑,
P53↑,
Bcl-2↑,
E6↓, Cervival cancer 8mg/Kg ↓E6, E7: ↑p53, pRb, Cyclin B1, P34 Cdc2, p21, PCNA
E7↓,
pRB↑,
CycB↑,
CDC2↑,
P21↑,
PCNA↓,
ALDH1A1↓, Mammary cancer 0-1 mg/mouse (5-10) ↓Mammosphere number, ALDH1 activity. Vimentin, glycolysis
Vim↓,
Glycolysis↓,
cMyc↓, Mesotheliome cancer 5 mg/Kg ↓Proteasomal chymotrypsin, C-Myc : ↑ Bax, CARP-1
BAX↑,
NF-kB↓,
Casp3↑, caspase-3 activation
CHOP↑, WA is found to increase activation of Elk1 and CHOP (CCAAT-enhancer-binding protein homologous protein) by RSK, as well as up-regulation of DR5 by selectively suppressing pathway ERK
DR5↑,
ERK↓,
Wnt↓, WA inhibits Wnt/β-catenin pathway via suppression of AKT signalling, which inhibits cancer cell motility and sensitises for cell death
β-catenin/ZEB1↓,
Akt↓,
HSP90↓, WA-dependent inhibition of heat shock protein (HSP) chaperone functions. WA inhibits the activity of HSP90-mediated function

1176- Ash,    Metabolic Alterations in Mammary Cancer Prevention by Withaferin A in a Clinically Relevant Mouse Model
- in-vivo, NA, NA
TumVol↓, lower by 94%
Apoptosis↑,
Glycolysis↓, reduced levels of glycolysis intermediates.
PKM2↓,
PGK1↓,
ALDOAiso2↓,

1180- Ash,    Withaferin A Inhibits Liver Cancer Tumorigenesis by Suppressing Aerobic Glycolysis through the p53/IDH1/HIF-1α Signaling Axis
- in-vitro, Liver, HepG2
IDH1↑, IDH1 expression was downregulated in human liver cancer cells compared to normal liver cells
Glycolysis↓, decreased levels of several glycolytic enzymes
P53↑,
Hif1a↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   ALDH1A1↓,1,   ALDOAiso2↓,1,   AP-1↓,1,   Apoptosis↑,2,   ATP↓,1,   BAX↑,2,   Bcl-2↑,1,   BIM↑,1,   BioAv↝,1,   Casp3↑,1,   CD44↓,1,   CDC2↑,1,   CDK1↓,1,   CHOP↑,2,   cMET↓,1,   cMyc↓,3,   CSCs↓,1,   CycB↑,1,   DR5↑,2,   E6↓,2,   E7↓,2,   eIF2α↓,1,   EMT↓,1,   ERK↓,1,   Ferroptosis↑,1,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,5,   GPx↑,1,   GPx4↓,1,   Hif1a↓,1,   HK2↓,1,   HO-1↑,1,   HSP90↓,2,   IDH1↑,1,   Iron↑,1,   lactateProd↓,2,   lipid-P↓,1,   MAPK↑,1,   Nanog↓,1,   NF-kB↓,2,   NOTCH1↓,1,   P21↑,1,   p38↑,1,   P53↑,2,   PCNA↓,1,   PGK1↓,1,   PI3K↓,1,   PKM2↓,2,   pRB↑,1,   RET↓,1,   ROS↑,1,   SOD↑,1,   SOX2↓,1,   STAT3↓,1,   TCA↓,1,   TumCCA↑,1,   TumVol↓,1,   uPA↓,1,   Vim↓,1,   Warburg↓,1,   Wnt↓,2,   β-catenin/ZEB1↓,1,  
Total Targets: 64

Results for Effect on Normal Cells:
GSH↑,1,   hepatoP↑,1,   NRF2↑,1,  
Total Targets: 3

Scientific Paper Hit Count for: Glycolysis, Glycolysis
5 Ashwagandha
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:36  Target#:129  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page