condition found tbRes List
Ash, Ashwagandha: Click to Expand ⟱
Features:
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha).
The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides).
-The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine.
Ashwagandha is an herb that may reduce stress, anxiety, and insomnia.
*-Ashwagandha is often characterized as an antioxidant.
-Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity.
Pathways:
-Induction of Apoptosis and ROS Generation
-Hsp90 Inhibition and Proteasomal Degradation

Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM).
In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight.
- General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily.
- 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001.
- Ashwagandha Pure 400mg/capsule is available from mcsformulas.com.

-Note half-life 4-6 hrs?.
BioAv
Pathways:
- well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


EMT, Epithelial-Mesenchymal Transition: Click to Expand ⟱
Source:
Type:
Biological process in which epithelial cells lose their cell polarity and cell-cell adhesion properties and gain mesenchymal traits, such as increased motility and invasiveness. This process is pivotal during embryogenesis and wound healing. Hh signaling pathway is able to regulate the EMT. Snail, E-cadherin and N-cadherin, key components of EMT; EMT-related factors, E-cadherin, N-cadherin, vimentin; The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin.
EMT is regulated by various signaling pathways, including TGF-β, Wnt, Notch, and Hedgehog pathways. Transcription factors such as Snail, Slug, Twist, and ZEB play critical roles in repressing epithelial markers (like E-cadherin) and promoting mesenchymal markers (like N-cadherin and vimentin).
EMT is associated with increased tumor aggressiveness, enhanced migratory and invasive capabilities, and resistance to apoptosis.


Scientific Papers found: Click to Expand⟱
3155- Ash,    Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera
- Review, Var, NA
Half-Life↝, The pharmacokinetic study demonstrates that a dose of 4 mg/kg in mice results in 2 μM concentration in plasma (with a half-life of 1.3 h, in the breast cancer model of mice),
Inflam↓, WA has many biological activities: anti-inflammatory (Dubey et al. 2018), immunomodulatory (Davis and Girija 2000), antistress (Singh et al. 2016), antioxidant (Sumathi et al. 2007) and anti-angiogenesis
antiOx↓,
angioG↓,
ROS↑, WA induces oxidative stress (ROS) determining mitochondrial dysfunction as well as apoptosis in leukaemia cells
BAX↑, withaferin mediates apoptosis by ROS generation and activation of Bax/Bak.
Bak↑,
E6↓, The results of the study show that withaferin treatment downregulates the HPV E6 and E7 oncoprotein and induces accumulation of p53 result in the activation of various apoptotic markers (e.g. Bcl2, Bax, caspase-3 and cleaved PARP).
E7↓,
P53↑,
Casp3↑,
cl‑PARP↑,
STAT3↓, WA treatment also decreases the level of STAT3
eff↑, This study concludes that combination of DOX with WA can reduce the doses and side effects of the treatment which gives valuable possibilities for future research.
HSP90↓, by inhibiting the HSP90
TGF-β↓, WA inhibited TGFβ1 and TNFα- induced EMT;
TNF-α↓,
EMT↑,
mTOR↓, by downregulation of mTOR/STAT3 signalling.
NOTCH1↓, WA showed inhibition of pro-survival signalling markers (Notch1, pAKT and NFκB)
p‑Akt↓,
NF-kB↓,
Dose↝, WA dose escalation sets consisted of 72, 108, 144 and 216 mg, fractioned in 2-4 doses/day.

3156- Ash,    Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug
- Review, Var, NA
MAPK↑, Figure 3
p38↑,
BAX↑,
BIM↑,
CHOP↑,
ROS↑,
DR5↑,
Apoptosis↑,
Ferroptosis↑,
GPx4↓,
BioAv↝, WA has a rapid oral absorption and reaches to peak plasma concentration of around 16.69 ± 4.02 ng/ml within 10 min after oral administration of Withania somnifera aqueous extract at dose of 1000 mg/kg, which is equivalent to 0.458 mg/kg of WA
HSP90↓, table 1 10uM) were found to inhibit the chaperone activity of HSP90
RET↓,
E6↓,
E7↓,
Akt↓,
cMET↓,
Glycolysis↓, by suppressing the glycolysis and tricarboxylic (TCA) cycle
TCA↓,
NOTCH1↓,
STAT3↓,
AP-1↓,
PI3K↓,
eIF2α↓,
HO-1↑,
TumCCA↑, WA (1--3 uM) have been reported to inhibit cell proliferation by inducing G2 and M phase cycle arrest inovarian, breast, prostate, gastric and myelodysplastic/leukemic cancer cells and osteosarcoma
CDK1↓, WA is able to decrease the cyclin-dependent kinase 1 (Cdk1) activity and prevent Cdk1/cyclin B1 complex formation, which are key steps in cell cycle progression
*hepatoP↑, A treatment (40 mg/kg) reduces acetaminophen-induced liver injury (AILI) in mouse models and decreases H 2O 2-induced glutathione (GSH) depletion and necrosis in hepatocyte
*GSH↑,
*NRF2↑, WA triggers an anti-oxidant response after acetaminophen overdose by enhancing hepatic transcription of the nuclear factor erythroid 2–related factor 2 (NRF2)-responsive gene
Wnt↓, indirectly inhibit Wnt
EMT↓, WA can also block tumor metastasis through reduced expression of epithelial mesenchymal transition (EMT) markers.
uPA↓, WA (700 nM) exert anti-meta-static activities in breast cancer cells through inhibition of the urokinase-type plasminogen activator (uPA) protease
CSCs↓, s WA (125-500 nM) suppress tumor sphere formation indicating that the self-renewal of CSC is abolished
Nanog↓, loss of these CSC-specific characteristics is reflected in the loss of typical stem cell markers such as ALDH1A, Nanog, Sox2, CD44 and CD24
SOX2↓,
CD44↓,
lactateProd↓, drop in lactate levels compared to control mice.
Iron↑, Furthermore, we found that WA elevates the levels of intracellular labile ferrous iron (Fe +2 ) through excessive activation of heme oxygenase-1 (HMOX1), which independently causes accumulation of toxic lipid radicals and ensuing ferroptosis
NF-kB↓, nhibition of NF-kB kinase signaling pathway

3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, withaferin A suppressed cell proliferation in prostate, ovarian, breast, gastric, leukemic, and melanoma cancer cells and osteosarcomas by stimulating the inhibition of the cell cycle at several stages, including G0/G1 [86], G2, and M phase
H3↑, via the upregulation of phosphorylated Aurora B, H3, p21, and Wee-1, and the downregulation of A2, B1, and E2 cyclins, Cdc2 (Tyr15), phosphorylated Chk1, and Chk2 in DU-145 and PC-3 prostate cancer cells.
P21↑,
cycA1↓,
CycB↓,
cycE↓,
CDC2↓,
CHK1↓,
Chk2↓,
p38↑, nitiated cell death in the leukemia cells by increasing the expression of p38 mitogen-activated protein kinases (MAPK)
MAPK↑,
E6↓, educed the expression of human papillomavirus E6/E7 oncogenes in cervical cancer cells
E7↓,
P53↑, restored the p53 pathway causing the apoptosis of cervical cancer cells.
Akt↓, oral dose of 3–5 mg/kg withaferin A attenuated the activation of Akt and stimulated Forkhead Box-O3a (FOXO3a)-mediated prostate apoptotic response-4 (Par-4) activation,
FOXO3↑,
ROS↑, the generation of reactive oxygen species, histone H2AX phosphorylation, and mitochondrial membrane depolarization, indicating that withaferin A can cause the oxidative stress-mediated killing of oral cancer cells [
γH2AX↑,
MMP↓,
mitResp↓, withaferin A inhibited the expansion of MCF-7 and MDA-MB-231 human breast cancer cells by ROS production, owing to mitochondrial respiration inhibition
eff↑, combination treatment of withaferin A and hyperthermia induced the death of HeLa cells via a decrease in the mitochondrial transmembrane potential and the downregulation of the antiapoptotic protein myeloid-cell leukemia 1 (MCL-1)
TumCD↑,
Mcl-1↓,
ER Stress↑, . Withaferin A also attenuated the development of glioblastoma multiforme (GBM), both in vitro and in vivo, by inducing endoplasmic reticulum stress via activating the transcription factor 4-ATF3-C/EBP homologous protein (ATF4-ATF3-CHOP)
ATF4↑,
ATF3↑,
CHOP↑,
NOTCH↓, modulating the Notch-1 signaling pathway and the downregulation of Akt/NF-κB/Bcl-2 . withaferin A inhibited the Notch signaling pathway
NF-kB↓,
Bcl-2↓,
STAT3↓, Withaferin A also constitutively inhibited interleukin-6-induced phosphorylation of STAT3,
CDK1↓, lowering the levels of cyclin-dependent Cdk1, Cdc25C, and Cdc25B proteins,
β-catenin/ZEB1↓, downregulation of p-Akt expression, β-catenin, N-cadherin and epithelial to the mesenchymal transition (EMT) markers
N-cadherin↓,
EMT↓,
Cyt‑c↑, depolarization and production of ROS, which led to the release of cytochrome c into the cytosol,
eff↑, combinatorial effect of withaferin A and sulforaphane was also observed in MDA-MB-231 and MCF-7 breast cancer cells, with a dramatic reduction of the expression of the antiapoptotic protein Bcl-2 and an increase in the pro-apoptotic Bax level, thus p
CDK4↓, downregulates the levels of cyclin D1, CDK4, and pRB, and upregulates the levels of E2F mRNA and tumor suppressor p21, independently of p53
p‑RB1↓,
PARP↑, upregulation of Bax and cytochrome c, downregulation of Bcl-2, and activation of PARP, caspase-3, and caspase-9 cleavage
cl‑Casp3↑,
cl‑Casp9↑,
NRF2↑, withaferin A binding with Keap1 causes an increase in the nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels, which in turn, regulates the expression of antioxidant proteins that can protect the cells from oxidative stress.
ER-α36↓, Decreased ER-α
LDHA↓, inhibited growth, LDHA activity, and apoptotic induction
lipid-P↑, induction of oxidative stress, increased lipid peroxidation,
AP-1↓, anti-inflammatory qualities of withaferin A are specifically attributed to its inhibition of pro-inflammatory molecules, α-2 macroglobulin, NF-κB, activator protein 1 (AP-1), and cyclooxygenase-2 (COX-2) inhibition,
COX2↓,
RenoP↑, showing strong evidence of the renoprotective potential of withaferin A due to its anti-inflammatory activity
PDGFR-BB↓, attenuating the BB-(PDGF-BB) platelet growth factor
SIRT3↑, by increasing the sirtuin3 (SIRT3) expression
MMP2↓, withaferin A inhibits matrix metalloproteinase-2 (MMP-2) and MMP-9,
MMP9↓,
NADPH↑, but also provokes mRNA stimulation for a set of antioxidant genes, such as NADPH quinone dehydrogenase 1 (NQO1), glutathione-disulfide reductase (GSR), Nrf2, heme oxygenase 1 (HMOX1),
NQO1↑,
GSR↑,
HO-1↑,
*SOD2↑, cardiac ischemia-reperfusion injury model. Withaferin A triggered the upregulation of superoxide dismutase SOD2, SOD3, and peroxiredoxin 1(Prdx-1).
*Prx↑,
*Casp3?, and ameliorated cardiomyocyte caspase-3 activity
eff↑, combination with doxorubicin (DOX), is also responsible for the excessive generation of ROS
Snail↓, inhibition of EMT markers, such as Snail, Slug, β-catenin, and vimentin.
Slug↓,
Vim↓,
CSCs↓, highly effective in eliminating cancer stem cells (CSC) that expressed cell surface markers, such as CD24, CD34, CD44, CD117, and Oct4 while downregulating Notch1, Hes1, and Hey1 genes;
HEY1↓,
MMPs↓, downregulate the expression of MMPs and VEGF, as well as reduce vimentin, N-cadherin cytoskeleton proteins,
VEGF↓,
uPA↓, and protease u-PA involved in the cancer cell metastasis
*toxicity↓, A was orally administered to Wistar rats at a dose of 2000 mg/kg/day and had no adverse effects on the animals
CDK2↓, downregulated the activation of Bcl-2, CDK2, and cyclin D1
CDK4↓, Another study also demonstrated the inhibition of Hsp90 by withaferin A in a pancreatic cancer cell line through the degradation of Akt, cyclin-dependent kinase 4 Cdk4,
HSP90↓,

3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ)
*cardioP↑, cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis.
*AMPK↑,
*BioAv↝, The oral bioavailability was found to be 32.4 ± 4.8% after 5 mg/kg intravenous and 10 mg/kg oral WA administration.
*Half-Life↝, The stability studies of WA in gastric fluid, liver microsomes, and intestinal microflora solution showed similar results in male rats and humans with a half-life of 5.6 min.
*Half-Life↝, WA reduced quickly, and 27.1% left within 1 h
*Dose↑, WA showed that formulation at dose 4800 mg having equivalent to 216 mg of WA, was tolerated well without showing any dose-limiting toxicity.
*chemoP↑, Here, we discuss the chemo-preventive effects of WA on multiple organs.
IL6↓, attenuates IL-6 in inducible (MCF-7 and MDA-MB-231)
STAT3↓, WA displayed downregulation of STAT3 transcriptional activity
ROS↓, associated with reactive oxygen species (ROS) generation, resulted in apoptosis of cells. The WA treatment decreases the oxidative phosphorylation
OXPHOS↓,
PCNA↓, uppresses human breast cells’ proliferation by decreasing the proliferating cell nuclear antigen (PCNA) expression
LDH↓, WA treatment decreases the lactate dehydrogenase (LDH) expression, increases AMP protein kinase activation, and reduces adenosine triphosphate
AMPK↑,
TumCCA↑, (SKOV3 andCaOV3), WA arrest the G2/M phase cell cycle
NOTCH3↓, It downregulated the Notch-3/Akt/Bcl-2 signaling mediated cell survival, thereby causing caspase-3 stimulation, which induces apoptosis.
Akt↓,
Bcl-2↓,
Casp3↑,
Apoptosis↑,
eff↑, Withaferin-A, combined with doxorubicin, and cisplatin at suboptimal dose generates ROS and causes cell death
NF-kB↓, reduces the cytosolic and nuclear levels of NF-κB-related phospho-p65 cytokines in xenografted tumors
CSCs↓, WA can be used as a pharmaceutical agent that effectively kills cancer stem cells (CSCs).
HSP90↓, WA inhibit Hsp90 chaperone activity, disrupting Hsp90 client proteins, thus showing antiproliferative effects
PI3K↓, WA inhibited PI3K/AKT pathway.
FOXO3↑, Par-4 and FOXO3A proapoptotic proteins were increased in Pten-KO mice supplemented with WA.
β-catenin/ZEB1↓, decreased pAKT expression and the β-catenin and N-cadherin epithelial-to-mesenchymal transition markers in WA-treated tumors control
N-cadherin↓,
EMT↓,
FASN↓, WA intraperitoneal administration (0.1 mg) resulted in significant suppression of circulatory free fatty acid and fatty acid synthase expression, ATP citrate lyase,
ACLY↓,
ROS↑, WA generates ROS followed by the activation of Nrf2, HO-1, NQO1 pathways, and upregulating the expression of the c-Jun-N-terminal kinase (JNK)
NRF2↑,
HO-1↑,
NQO1↑,
JNK↑,
mTOR↓, suppressing the mTOR/STAT3 pathway
neuroP↑, neuroprotective ability of WA (50 mg/kg b.w)
*TNF-α↓, WA attenuate the levels of neuroinflammatory mediators (TNF-α, IL-1β, and IL-6)
*IL1β↓,
*IL6↓,
*IL8↓, WA decreases the pro-inflammatory cytokines (IL-6, TNFα, IL-8, IL-18)
*IL18↓,
RadioS↑, radiosensitizing combination effect of WA and hyperthermia (HT) or radiotherapy (RT)
eff↑, WA and cisplatin at suboptimal dose generates ROS and causes cell death [41]. The actions of this combination is attributed by eradicating cells, revealing markers of cancer stem cells like CD34, CD44, Oct4, CD24, and CD117

3172- Ash,    Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
Keap1↑, Notably, Withaferin A elevated Keap1 expression to mitigate Nrf2 signaling activation-mediated epithelial to mesenchymal transition (EMT) and ferroptosis-related protein xCT expression
NRF2↓,
EMT↓, Withaferin A suppresses epithelial-to-mesenchymal transition (EMT) in non-small cell lung cancer
TumCP↓, Withaferin A restrains proliferation, invasion, and VM of hepatoma cells while preserving normal hepatocytes
TumCI↓,
selectivity↑, , treatment with Withaferin A ranging from 1 to 100 μM had little effect on cell viability of human normal liver cells (HL-7702 cells), indicating the little cytotoxicity on normal hepatocytes.
*toxicity↓,
ROS↑, Withaferin A strikingly enhanced ROS () and MDA levels (), but reduced the GSH levels (), indicating the induction of ferroptosis by Withaferin A
MDA↑,
GSH↓,
Ferroptosis↑,

1181- Ash,    Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCMig↓,
TumCI↓,
EMT↓,
p‑SMAD2↓,
p‑SMAD3↓,
p‑NF-kB↓,

1358- Ash,    Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms
- Review, Var, NA
TumCCA↑,
Apoptosis↑,
TumAuto↑,
Ferroptosis↑,
TumCP↓,
CSCs↓,
TumMeta↓,
EMT↓,
angioG↓,
Vim↓,
HSP90↓,
annexin II↓, annexin II proteins directly bind to WA
m-FAM72A↓,
BCR-ABL↓,
Mortalin↓,
NRF2↓,
cMYB↓,
ROS↑, WA inhibits proliferation through ROS-mediated intrinsic apoptosis
ChemoSen↑, WA and cisplatin, WA produced ROS, while cisplatin caused DNA damage, suggesting that lower doses of cisplatin combined with suboptimal doses of WA could achieve the same effect
eff↑, sulforaphane and WA showed synergistic effects on epigenetic modifiers and cell proliferation in breast cancer cells
ChemoSen↑, WA and sorafenib caused G2/M arrest in anaplastic and papillary thyroid cancer cells
ChemoSen↑, combination of WA and 5-FU executed PERK axis-mediated endoplasmic reticulum (ER) stress-induced autophagy and apoptosis
eff↑, WA and carnosol also exhibit a synergistic effect on pancreatic cancer
*BioAv↓, Saurabh by Saurabh et al and Tianming et al reported oral bioavailability values 1.8% and 32.4 ± 4.8%, respectively, in male rats.
ROCK1↓, In another study, WA reduces macrophage infiltration and inhibits the expression of protein tyrosine kinase-2 (Pyk2), rho-associated kinase 1 (ROCK1), and VEGF in a hepatocellular carcinoma xenograft model, thereby suppressing tumor invasion and angi
TumCI↓,
Sp1/3/4↓, Furthermore, WA exerts potent anti-angiogenic activity in vivo.174 In the Ehrlich ascites tumor model, WA exerts its anti-angiogenic activity by reducing the binding of the transcription factor specificity protein 1 (Sp1) to VEGF
VEGF↓, n another study, WA reduces macrophage infiltration and inhibits the expression of protein tyrosine kinase-2 (Pyk2), rho-associated kinase 1 (ROCK1), and VEGF in a hepatocellular carcinoma xenograft model, thereby suppressing tumor invasion and angio
Hif1a↓, Furthermore, WA suppresses the AK4-HIF-1α signaling axis and acts as a potent antimetastatic agent in lung cancer.Citation79
EGFR↓, WA synergistically inhibited wild-type epidermal growth factor receptor (EGFR) lung cancer cell viability


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
ACLY↓,1,   Akt↓,3,   p‑Akt↓,1,   AMPK↑,1,   angioG↓,2,   annexin II↓,1,   antiOx↓,1,   AP-1↓,2,   Apoptosis↑,3,   ATF3↑,1,   ATF4↑,1,   Bak↑,1,   BAX↑,2,   Bcl-2↓,2,   BCR-ABL↓,1,   BIM↑,1,   BioAv↝,1,   Casp3↑,2,   cl‑Casp3↑,1,   cl‑Casp9↑,1,   CD44↓,1,   CDC2↓,1,   CDK1↓,2,   CDK2↓,1,   CDK4↓,2,   ChemoSen↑,3,   CHK1↓,1,   Chk2↓,1,   CHOP↑,2,   cMET↓,1,   cMYB↓,1,   COX2↓,1,   CSCs↓,4,   cycA1↓,1,   CycB↓,1,   cycE↓,1,   Cyt‑c↑,1,   Dose↝,1,   DR5↑,1,   E6↓,3,   E7↓,3,   eff↑,8,   EGFR↓,1,   eIF2α↓,1,   EMT↓,6,   EMT↑,1,   ER Stress↑,1,   ER-α36↓,1,   m-FAM72A↓,1,   FASN↓,1,   Ferroptosis↑,3,   FOXO3↑,2,   Glycolysis↓,1,   GPx4↓,1,   GSH↓,1,   GSR↑,1,   H3↑,1,   Half-Life↝,1,   HEY1↓,1,   Hif1a↓,1,   HO-1↑,3,   HSP90↓,5,   IL6↓,1,   Inflam↓,1,   Iron↑,1,   JNK↑,1,   Keap1↑,1,   lactateProd↓,1,   LDH↓,1,   LDHA↓,1,   lipid-P↑,1,   MAPK↑,2,   Mcl-1↓,1,   MDA↑,1,   mitResp↓,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   Mortalin↓,1,   mTOR↓,2,   N-cadherin↓,2,   NADPH↑,1,   Nanog↓,1,   neuroP↑,1,   NF-kB↓,4,   p‑NF-kB↓,1,   NOTCH↓,1,   NOTCH1↓,2,   NOTCH3↓,1,   NQO1↑,2,   NRF2↓,2,   NRF2↑,2,   OXPHOS↓,1,   P21↑,1,   p38↑,2,   P53↑,2,   PARP↑,1,   cl‑PARP↑,1,   PCNA↓,1,   PDGFR-BB↓,1,   PI3K↓,2,   RadioS↑,1,   p‑RB1↓,1,   RenoP↑,1,   RET↓,1,   ROCK1↓,1,   ROS↓,1,   ROS↑,6,   selectivity↑,1,   SIRT3↑,1,   Slug↓,1,   p‑SMAD2↓,1,   p‑SMAD3↓,1,   Snail↓,1,   SOX2↓,1,   Sp1/3/4↓,1,   STAT3↓,4,   TCA↓,1,   TGF-β↓,1,   TNF-α↓,1,   TumAuto↑,1,   TumCCA↑,4,   TumCD↑,1,   TumCI↓,3,   TumCMig↓,1,   TumCP↓,2,   TumMeta↓,1,   uPA↓,2,   VEGF↓,2,   Vim↓,2,   Wnt↓,1,   β-catenin/ZEB1↓,2,   γH2AX↑,1,  
Total Targets: 134

Results for Effect on Normal Cells:
AMPK↑,1,   BioAv↓,1,   BioAv↝,1,   cardioP↑,1,   Casp3?,1,   chemoP↑,1,   Dose↑,1,   GSH↑,1,   Half-Life↝,2,   hepatoP↑,1,   IL18↓,1,   IL1β↓,1,   IL6↓,1,   IL8↓,1,   NRF2↑,1,   p‑PPARγ↓,1,   Prx↑,1,   SOD2↑,1,   TNF-α↓,1,   toxicity↓,2,  
Total Targets: 20

Scientific Paper Hit Count for: EMT, Epithelial-Mesenchymal Transition
7 Ashwagandha
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:36  Target#:96  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page