condition found tbRes List
Ash, Ashwagandha: Click to Expand ⟱
Features:
Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha).
The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides).
-The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine.
Ashwagandha is an herb that may reduce stress, anxiety, and insomnia.
*-Ashwagandha is often characterized as an antioxidant.
-Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity.
Pathways:
-Induction of Apoptosis and ROS Generation
-Hsp90 Inhibition and Proteasomal Degradation

Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM).
In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight.
- General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily.
- 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001.
- Ashwagandha Pure 400mg/capsule is available from mcsformulas.com.

-Note half-life 4-6 hrs?.
BioAv
Pathways:
- well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCMig, Tumor cell migration: Click to Expand ⟱
Source:
Type:
Tumor cell migration is a critical process in cancer progression and metastasis, which is the spread of cancer cells from the primary tumor to distant sites in the body.


Scientific Papers found: Click to Expand⟱
3174- Ash,    Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC
- in-vitro, HCC, HepG2 - in-vitro, HCC, Hep3B - in-vitro, HCC, HUH7
NF-kB↓, We found that many of Nuclear factor kappa B (NF-κB), angiogenesis and inflammation associated proteins secretion is downregulated upon Withaferin A treatment.
angioG↓,
Inflam↓,
TumCP↓, uppressed the proliferation, migration, invasion, and anchorage-independent growth of these HCC cells.
TumCMig↓,
TumCI↓,
Sp1/3/4↓, Withaferin A inhibits NF-κB, Specificity protein 1 (Sp1) transcription factors, and downregulates Vascular Endothelial Growth Factor (VEGF) gene expression
VEGF↓,
angioG↓, Withaferin A (2.5 µM) treatment decreased the secretion of various angiogenesis-related markers, growth factors, and cytokines (Serpin F1(PEDF), uPA, PDGF-AA, Angiogenin, Endothelin-1, Macrophage migration inhibitory factor (MIF), PAI-1, MCP1, ICAM-1
uPA↓,
PDGF↓,
MCP1↓,
ICAM-1↓,
*NRF2↑, It also upregulates the Nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and protects from Acetaminophen-induced hepatotoxicity and liver injury
*hepatoP↑,

1173- Ash,    Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling
- in-vitro, EC, K1 - in-vitro, Nor, THESCs
TumCP↓,
*toxicity↓, comparatively lower toxicity against the THESCs normal cells
Apoptosis↑,
TumCCA↑, G2/M cell cycle arrest
TumCMig↓, 53%
TumCI↓, 40%
p‑SMAD2↓,
TGF-β↓,
*toxicity↓, Cytotoxicity of withaferin A was comparatively lower against normal THESCs endometrial cells (IC50 value of 76 µM) when compared to cancerous KLE cells.

1179- Ash,    Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCP↓,
TumCMig↓,
STAT3↓, implicated in the development and progression of colon cancer.
TumVol↓,
TumW↓,

1181- Ash,    Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCMig↓,
TumCI↓,
EMT↓,
p‑SMAD2↓,
p‑SMAD3↓,
p‑NF-kB↓,

1362- Ash,  GEM,    Synergistic Inhibition of Pancreatic Cancer Cell Growth and Migration by Gemcitabine and Withaferin A
- in-vitro, PC, PANC1 - in-vitro, PC, Hs766t
ChemoSen↑, combination treatment being the most effective
ROS↑, which were attenuated by N-acetylcysteine
Apoptosis↑,
TumCMig↓, strongest inhibition was observed when both compounds were co-administered
F-actin↓, leading to F-actin depolymerization
YMcells↓, greater reduction in cell stiffness compared to individual treatments
NF-kB↓, relative luciferase activity, which reflects NF-κB activity, was markedly elevated following treatment with GC (Figure 7). In contrast, treatment with WFA resulted in a notable decline in luciferase activity, particularly when combined with GC.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
angioG↓,2,   Apoptosis↑,2,   ChemoSen↑,1,   EMT↓,1,   F-actin↓,1,   ICAM-1↓,1,   Inflam↓,1,   MCP1↓,1,   NF-kB↓,2,   p‑NF-kB↓,1,   PDGF↓,1,   ROS↑,1,   p‑SMAD2↓,2,   p‑SMAD3↓,1,   Sp1/3/4↓,1,   STAT3↓,1,   TGF-β↓,1,   TumCCA↑,1,   TumCI↓,3,   TumCMig↓,5,   TumCP↓,3,   TumVol↓,1,   TumW↓,1,   uPA↓,1,   VEGF↓,1,   YMcells↓,1,  
Total Targets: 26

Results for Effect on Normal Cells:
hepatoP↑,1,   NRF2↑,1,   toxicity↓,2,  
Total Targets: 3

Scientific Paper Hit Count for: TumCMig, Tumor cell migration
5 Ashwagandha
1 Gemcitabine (Gemzar)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:36  Target#:326  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page