condition found tbRes List
HNK, Honokiol: Click to Expand ⟱
Features:
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.
-considered to have antioxidant properties
-low oral bioavailability and difficulty in intravenous administration
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.

Pathways:
-Inhibit NF-κB activation
-Downregulate STAT3 signalin
-Inhibiting the PI3K/Akt pathway,
-Inhibition of mTOR
-Influences various MAPK cascades—including ERK, JNK, and p38
-Inhibition of EGFR
-Inhibiting Notch pathway (CSCs)
-GPx4 inhibit
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways
-Disrupt the mitochondrial membrane potential in cancer cells.
-Reported to increase ROS production in cancer cells
-Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.
- is well-known in the research community for its role in activating SIRT3

-Note half-life 40–60 minutes
BioAv
Pathways:
- induce ROS production in cancer cells, and typically lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ Prx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
2879- HNK,    Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function
- in-vitro, Lung, H226 - in-vivo, NA, NA
tumCV↓, honokiol significantly reduced the percentage of bronchial that exhibit abnormal lung SCC histology from 24.4% bronchial in control to 11.0% bronchial in honokiol treated group (p= 0.01) while protecting normal bronchial histology (present in 20.5%
selectivity↑,
TumCP↓, In vitro studies revealed that honokiol inhibited lung SCC cells proliferation, arrested cells at the G1/S cell cycle checkpoint, while also leading to increased apoptosis.
TumCCA↑,
Apoptosis↑,
mt-ROS↑, interfering with mitochondrial respiration is a novel mechanism by which honokiol increased generation of reactive oxygen species (ROS) in the mitochondria, : mitochondrial ROS generation
Casp3↑, cells treated with honokiol showed a significant increase in caspase 3/7 activity, which occurred in dose- and time-dependent manners
Casp7↑,
OCR↓, Honokiol caused a fast and concentration-dependent decrease in basal oxygen consumption rate (OCR) in both cell lines
Cyt‑c↑, cytochrome c release was increased in honokil treated mouse lung SCC tissue
ATP↓, found a dramatic decrease in cellular ATP content
mitResp↓, Honokiol inhibits mitochondrial respiration and decreases ATP levels in H226 and H520 cells, which may elevate AMP and the intracellular AMP/ATP ratio, leading to activation of the AMPK
AMP↑,
AMPK↑,

2875- HNK,    Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo
- in-vitro, Lung, A549 - in-vitro, Lung, H1299 - in-vitro, Lung, H460 - in-vitro, SCC, H226
HDAC↓, Treatment of NSCLC cells (A549, H1299, H460 and H226) with honokiol (20, 40 and 60 µM) inhibited histone deacetylase (HDAC) activity, reduced the levels of class I HDAC proteins and enhanced histone acetyltransferase activity in a dose-dependent man
tumCV↓, These effects of honokiol were associated with a significant reduction in the viability of NSCLC cells
TumCCA↑, Treatment of A549 and H1299 cells with honokiol resulted in an increase in G1 phase arrest, and a decrease in the levels of cyclin D1, D2 and cyclin dependent kinases.
cycD1↓,
ac‑H3↑, Honokiol increases the levels of acetylated histone H3 and H4 in NSCLC cells
ac‑H4↑,
selectivity↑, Honokiol inhibits cell growth or viability of human NSCLC cells but not normal human bronchial epithelial cells
CDK2↓, Similarly, a marked reduction in the expression of CDK2, CDK4 and CDK6 proteins was observed
CDK4↓,

2891- HNK,    Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs
- Review, Var, NA
AntiCan↑, honokiol possesses anti-carcinogenic, anti-inflammatory, anti-oxidative, anti-angiogenic as well as inhibitory effect on malignant transformation of papillomas to carcinomas in vitro and in vivo animal models without any appreciable toxicity.
Inflam↓,
antiOx↑,
selectivity↑,
*toxicity↓,
cycD1↓, honokiol resulted in inhibition of UVB-induced expression levels of cyclins (cyclins D1, D2, and E) and CDKs in skin tumors
cycE↓,
CDK2↓,
CDK4↓,
TumMeta↓, Honokiol Inhibits Metastatic Potential of Melanoma Cells
NADPH↓, Honokiol not only reduces the NADPH oxidase activity
MMP2↓, honokiol treatment reduces the expression of MMP-2 and MMP-9
MMP9↓,
p‑mTOR↓, honokiol caused significant downregulation of mTOR phosphorylation
EGFR↓, honokiol decreases the expression levels of total EGFR
EMT↓, honokiol effectively inhibits EMT in breast cancer cells
SIRT1↑, onokiol increases the expressions of SIRT1 and SIRT3,
SIRT3↑,
EZH2↓, depletion of EZH2 by honokiol treatment inhibited cell proliferation
Snail↓, significantly down regulates Snail, vimentin, N-cadherin expression, and upregulates cytokeratin-18 and E-cadherin expression
Vim↓,
N-cadherin↓,
E-cadherin↑,
COX2↓, honokiol as an inhibitor of COX-2 expression
NF-kB↓, inhibited transcriptional activity of NF-jB,
*ROS↓, Inhibition of UVR-induced inflammatory mediators as well as ROS by honokiol treatment contributes to the prevention of UVR-induced skin tumor development
Ca+2↑, excessive influx of cytosolic calcium ion into the mitochondria triggers dysfunction of the mitochon- drial membrane permeabilization with mitochondrial ROS induction
ROS↑,

2892- HNK,    Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vitro, Lung, H385 - in-vitro, Nor, BEAS-2B
TumCCA↑, Honokiol was shown to induce G1 arrest and apoptosis to inhibit the growth of KRAS mutant lung cancer cells
Apoptosis↑,
SIRT3↑, we also discovered that Sirt3 was significantly up-regulated in honokiol treated KRAS mutant lung cancer cells,
Hif1a↓, leading to destabilization of its target gene Hif-1α, (accompanied by a reduction of Hif-1a expression)
selectivity↑, but it showed low toxicity to two normal lung cells (CCD19-Lu and BEAS-2B)
p‑mTOR↓, honokiol suppressed mTOR phosphorylation, leading to inhibition of P70S6K kinase activity,
p70S6↓,

2895- HNK,    Mitochondria-Targeted Honokiol Confers a Striking Inhibitory Effect on Lung Cancer via Inhibiting Complex I Activity
- in-vitro, Lung, PC9
eff↑, Mito-HNK is >100-fold more potent than HNK in inhibiting cell proliferation
TumCP↓,
mt-ROS↑, inhibiting mitochondrial complex ǀ, stimulating reactive oxygen species generation, oxidizing mitochondrial peroxiredoxin-3, and suppressing the phosphorylation of mitoSTAT3
Prx3↑,
mt-STAT3↓,
*toxicity∅, Mito-HNK showed no toxicity and targets the metabolic vulnerabilities of primary and metastatic lung cancers.
selectivity↑,
ChemoSen↑, combination with standard chemotherapeutics.

2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, honokiol caused dose-dependent and time-dependent cell death in human osteosarcoma cells
TumAuto↑, death induced by honokiol were primarily autophagy and apoptosis.
Apoptosis↑,
TumCCA↑, honokiol induced G0/G1 phase arrest,
GRP78/BiP↑, elevated the levels of glucose-regulated protein (GRP)−78, an endoplasmic reticular stress (ERS)-associated protein
ROS↑, increased the production of intracellular reactive oxygen species (ROS)
eff↓, In contrast, reducing production of intracellular ROS using N-acetylcysteine, a scavenger of ROS, concurrently suppressed honokiol-induced cellular apoptosis, autophagy, and cell cycle arrest.
p‑ERK↑, honokiol stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2.
selectivity↑, human fibroblasts showed strong resistance to HNK, the IC50 values for which were 118.9 and 71.5 μM
Ca+2↑, HNK increased intracellular Ca2+ in both HOS and U2OS cells
MMP↓, mitochondrial membrane potential (MMP) sharply decreased following HNK treatment
Casp3↑, HNK markedly activated caspase-3, caspase-9
Casp9↑,
cl‑PARP↑, led to PARP cleavage
Bcl-2↓, expression of Bcl-2, Bcl-xl, and survivin was found to be decreased
Bcl-xL↓,
survivin↓,
LC3B-II↑, HNK increased the level of LC3B-II and Atg5 in HOS and U2OS cells.
ATG5↑,
TumVol↓, HNK at doses of 40 mg/kg resulted in significant decrease in tumor volume and weight, after 7 days of drug administration
TumW↓,
ER Stress↑, ER stress can trigger ROS production through release of calcium

2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, induction of G0/G1 and G2/M cell cycle arrest
CDK2↓, (via the regulation of cyclin-dependent kinase (CDK) and cyclin proteins),
EMT↓, epithelial–mesenchymal transition inhibition via the downregulation of mesenchymal markers
MMPs↓, honokiol possesses the capability to supress cell migration and invasion via the downregulation of several matrix-metalloproteinases
AMPK↑, (activation of 5′ AMP-activated protein kinase (AMPK) and KISS1/KISS1R signalling)
TumCI↓, inhibiting cell migration, invasion, and metastasis, as well as inducing anti-angiogenesis activity (via the down-regulation of vascular endothelial growth factor (VEGFR) and vascular endothelial growth factor (VEGF)
TumCMig↓,
TumMeta↓,
VEGFR2↓,
*antiOx↑, diverse biological activities, including anti-arrhythmic, anti-inflammatory, anti-oxidative, anti-depressant, anti-thrombocytic, and anxiolytic activities
*Inflam↓,
*BBB↑, Due to its ability to cross the blood–brain barrier
*neuroP↑, beneficial towards neuronal protection through various mechanism, such as the preservation of Na+/K+ ATPase, phosphorylation of pro-survival factors, preservation of mitochondria, prevention of glucose, reactive oxgen species (ROS), and inflammatory
*ROS↓,
Dose↝, Generally, the concentrations used for the in vitro studies are between 0–150 μM
selectivity↑, Interestingly, honokiol has been shown to exhibit minimal cytotoxicity against on normal cell lines, including human fibroblast FB-1, FB-2, Hs68, and NIH-3T3 cells
Casp3↑, ↑ Caspase-3 & caspase-9
Casp9↑,
NOTCH1↓, Inhibition of Notch signalling: ↓ Notch1 & Jagged-1;
cycD1↓, ↓ cyclin D1 & c-Myc;
cMyc↓,
P21?, ↑ p21WAF1 protein
DR5↑, ↑ DR5 & cleaved PARP
cl‑PARP↑,
P53↑, ↑ phosphorylated p53 & p53
Mcl-1↑, ↓ Mcl-1 protein
p65↓, ↓ p65; ↓ NF-κB
NF-kB↓,
ROS↑, ↑ JNK activation ,Increase ROS activity:
JNK↑,
NRF2↑, ↑ Nrf2 & c-Jun protein activation
cJun↑,
EF-1α↓, ↓ EFGR; ↓ MAPK/PI3K pathway activity
MAPK↓,
PI3K↓,
mTORC1↓, ↓ mTORC1 function; ↑ LKB1 & cytosolic localisation
CSCs↓, Inhibit stem-like characteristics: ↓ Oct4, Nanog & Sox4 protein; ↓ STAT3;
OCT4↓,
Nanog↓,
SOX4↓,
STAT3↓,
CDK4↓, ↓ Cdk2, Cdk4 & p-pRbSer780;
p‑RB1↓,
PGE2↓, ↓ PGE2 production ↓ COX-2 ↑ β-catenin
COX2↓,
β-catenin/ZEB1↑,
IKKα↓, ↓ IKKα
HDAC↓, ↓ class I HDAC proteins; ↓ HDAC activity;
HATs↑, ↑ histone acetyltransferase (HAT) activity; ↑ histone H3 & H4
H3↑,
H4↑,
LC3II↑, ↑ LC3-II
c-Raf↓, ↓ c-RAF
SIRT3↑, ↑ Sirt3 mRNA & protein; ↓ Hif-1α protein
Hif1a↓,
ER Stress↑, ↑ ER stress signalling pathway activation; ↑ GRP78,
GRP78/BiP↑,
cl‑CHOP↑, ↑ cleaved caspase-9 & CHOP;
MMP↓, mitochondrial depolarization
PCNA↓, ↓ cyclin B1, cyclin D1, cyclin D2 & PCNA;
Zeb1↓, ↓ ZEB2 Inhibit
NOTCH3↓, ↓ Notch3/Hes1 pathway
CD133↓, ↓ CD133 & Nestin protein
Nestin↓,
ATG5↑, ↑ Atg7 protein activation; ↑ Atg5;
ATG7↑,
survivin↓, ↓ Mcl-1 & survivin protein
ChemoSen↑, honokiol potentiated the apoptotic effect of both doxorubicin and paclitaxel against human liver cancer HepG2 cells.
SOX2↓, Honokiol was shown to downregulate the expression of Oct4, Nanog, and Sox2 which were known to be expressed in osteosarcoma, breast carcinoma and germ cell tumours
OS↑, Lipo-HNK was also shown to prolong survival and induce intra-tumoral apoptosis in vivo.
P-gp↓, Honokiol was shown to downregulate the expression of P-gp at mRNA and protein levels in MCF-7/ADR, a human breast MDR cancer cell line
Half-Life↓, For i.v. administration, it has been found that there was a rapid rate of distribution followed by a slower rate of elimination (elimination half-life t1/2 = 49.22 min and 56.2 min for 5 mg or 10 mg of honokiol, respectively
Half-Life↝, male and female dogs was assessed. The elimination half-life (t1/2 in hours) was found to be 20.13 (female), 9.27 (female), 7.06 (male), 4.70 (male), and 1.89 (male) after administration of doses of 8.8, 19.8, 3.9, 44.4, and 66.7 mg/kg, respectively.
eff↑, Apart from that, epigallocatechin-3-gallate functionalized chitin loaded with honokiol nanoparticles (CE-HK NP), developed by Tang et al. [224], inhibit HepG2
BioAv↓, extensive biotransformation of honokiol may contribute to its low bioavailability.

2865- HNK,    Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma
- in-vitro, MB, DAOY - vitro+vivo, NA, NA
BioAv↓, poor water solubility of HNK results in its low bioavailability, thus limiting its wide use in clinical cancer treatments
BioAv↓, Liposomes can overcome this limitation, and liposomal HNK (Lip-HNK) has promising clinical applications in this aspect
TumCP↓, increased Lip-HNK concentration could inhibit the proliferation of DAOY and D283 cells, without exerting effects on the growth of non-tumor cells
selectivity↑,
P53↑, P53 and P21 proteins (inhibiting cell cycle progression) was increased
P21↑,
CDK4↓, Lip-HNK also downregulated the expression of CDK4 and cyclin D1
cycD1↓,
mtDam↑, Lip-HNK caused apoptosis and death, which, in turn, led to the failure of mitochondrial membrane function
ROS↑, Lip-HNK induced ROS production, which, as hypothesized, was blocked by the ROS scavenger NAC
eff↓, Lip-HNK induced ROS production, which, as hypothesized, was blocked by the ROS scavenger NAC
Casp3↑, caspase-3 sectioned and the Bax protein level increased by Lip-HNK
BAX↑,
LC3II↑, LC3BII protein in the Lip-HNK-treated group was noticeably elevated
Beclin-1↑, Beclin-1 (BECN), Atg7 proteins, and LC3BII were dramatically upregulated in the Lip-HNK-treated cells
ATG7↑,
p62↑, Lip-HNK treatment remarkably increased p62 expression, which was dose-dependent
eff↑, Lip-HNK treatment (20 mg/kg) drastically inhibited tumor growth. The combined treatment of Lip-HNK, Chloroquine , and Carboplatin showed more superior antitumor effects
ChemoSen↑, Lip-HNK alone or combined with chemotherapy (Carboplatin or Etoposide) causes significant regression of orthotopic xenografts
*toxicity↓, We also found that Lip-HNK did not damage the liver and kidney


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 8

Results for Effect on Cancer/Diseased Cells:
AMP↑,1,   AMPK↑,2,   AntiCan↑,1,   antiOx↑,1,   Apoptosis↑,3,   ATG5↑,2,   ATG7↑,2,   ATP↓,1,   BAX↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   Beclin-1↑,1,   BioAv↓,3,   Ca+2↑,2,   Casp3↑,4,   Casp7↑,1,   Casp9↑,2,   CD133↓,1,   CDK2↓,3,   CDK4↓,4,   ChemoSen↑,3,   cl‑CHOP↑,1,   cJun↑,1,   cMyc↓,1,   COX2↓,2,   CSCs↓,1,   cycD1↓,4,   cycE↓,1,   Cyt‑c↑,1,   Dose↝,1,   DR5↑,1,   E-cadherin↑,1,   EF-1α↓,1,   eff↓,2,   eff↑,3,   EGFR↓,1,   EMT↓,2,   ER Stress↑,2,   p‑ERK↑,1,   EZH2↓,1,   GRP78/BiP↑,2,   H3↑,1,   ac‑H3↑,1,   H4↑,1,   ac‑H4↑,1,   Half-Life↓,1,   Half-Life↝,1,   HATs↑,1,   HDAC↓,2,   Hif1a↓,2,   IKKα↓,1,   Inflam↓,1,   JNK↑,1,   LC3B-II↑,1,   LC3II↑,2,   MAPK↓,1,   Mcl-1↑,1,   mitResp↓,1,   MMP↓,2,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mtDam↑,1,   p‑mTOR↓,2,   mTORC1↓,1,   N-cadherin↓,1,   NADPH↓,1,   Nanog↓,1,   Nestin↓,1,   NF-kB↓,2,   NOTCH1↓,1,   NOTCH3↓,1,   NRF2↑,1,   OCR↓,1,   OCT4↓,1,   OS↑,1,   P-gp↓,1,   P21?,1,   P21↑,1,   P53↑,2,   p62↑,1,   p65↓,1,   p70S6↓,1,   cl‑PARP↑,2,   PCNA↓,1,   PGE2↓,1,   PI3K↓,1,   Prx3↑,1,   c-Raf↓,1,   p‑RB1↓,1,   ROS↑,4,   mt-ROS↑,2,   selectivity↑,8,   SIRT1↑,1,   SIRT3↑,3,   Snail↓,1,   SOX2↓,1,   SOX4↓,1,   STAT3↓,1,   mt-STAT3↓,1,   survivin↓,2,   TumAuto↑,1,   TumCCA↑,5,   TumCD↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,3,   tumCV↓,2,   TumMeta↓,2,   TumVol↓,1,   TumW↓,1,   VEGFR2↓,1,   Vim↓,1,   Zeb1↓,1,   β-catenin/ZEB1↑,1,  
Total Targets: 115

Results for Effect on Normal Cells:
antiOx↑,1,   BBB↑,1,   Inflam↓,1,   neuroP↑,1,   ROS↓,2,   toxicity↓,2,   toxicity∅,1,  
Total Targets: 7

Scientific Paper Hit Count for: selectivity, selectivity
8 Honokiol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:94  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page