condition found tbRes List
HNK, Honokiol: Click to Expand ⟱
Features:
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.
-considered to have antioxidant properties
-low oral bioavailability and difficulty in intravenous administration
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.

Pathways:
-Inhibit NF-κB activation
-Downregulate STAT3 signalin
-Inhibiting the PI3K/Akt pathway,
-Inhibition of mTOR
-Influences various MAPK cascades—including ERK, JNK, and p38
-Inhibition of EGFR
-Inhibiting Notch pathway (CSCs)
-GPx4 inhibit
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways
-Disrupt the mitochondrial membrane potential in cancer cells.
-Reported to increase ROS production in cancer cells
-Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.
- is well-known in the research community for its role in activating SIRT3

-Note half-life 40–60 minutes
BioAv
Pathways:
- induce ROS production in cancer cells, and typically lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP, HSP↓ Prx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


PARP, poly ADP-ribose polymerase (PARP) cleavage: Click to Expand ⟱
Source:
Type:
Poly (ADP-ribose) polymerase (PARP) cleavage is a hallmark of caspase activation. PARP (Poly (ADP-ribose) polymerase) is a family of proteins involved in a variety of cellular processes, including DNA repair, genomic stability, and programmed cell death. PARP enzymes play a crucial role in repairing single-strand breaks in DNA.
PARP has gained significant attention, particularly in the treatment of certain types of tumors, such as those with BRCA1 or BRCA2 mutations. These mutations impair the cell's ability to repair double-strand breaks in DNA through homologous recombination. Cancer cells with these mutations can become reliant on PARP for survival, making them particularly sensitive to PARP inhibitors.
PARP inhibitors, such as olaparib, rucaparib, and niraparib, have been developed as targeted therapies for cancers associated with BRCA mutations.

PARP Family:
The poly (ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a number of cellular processes, including DNA repair, genomic stability, and programmed cell death.
PARP1 is the predominant family member responsible for detecting DNA strand breaks and initiating repair processes, especially through base excision repair (BER).

PARP1 Overexpression:
In several cancer types—including breast, ovarian, prostate, and lung cancers—elevated PARP1 expression and/or activity has been reported.
High PARP1 expression in certain cancers has been associated with aggressive tumor behavior and resistance to therapies (especially those that induce DNA damage).
Increased PARP1 activity may correlate with poorer overall survival in tumors that rely on DNA repair for survival.


Scientific Papers found: Click to Expand⟱
2885- HNK,    Honokiol: a novel natural agent for cancer prevention and therapy
NF-kB↓, Honokiol targets multiple signaling pathways including nuclear factor kappa B (NF-κB), signal transducers and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (m-TOR)
STAT3↓,
EGFR↓,
mTOR↓,
BioAv↝, honokiol has revealed a desirable spectrum of bioavailability after intravenous administration in animal models, thus making it a suitable agent for clinical trials
Inflam↓, inflammation, proliferation, angiogenesis, invasion and metastasis.
TumCP↓,
angioG↓,
TumCI↓,
TumMeta↓,
cSrc↓, STAT3 inhibition by honokiol has also been correlated with the repression of upstream protein tyrosine kinases c-Src, JAK1 and JAK2
JAK1↓,
JAK2↓,
ERK↓, by inhibiting ERK and Akt pathways (31) or by upregulation of PTEN
Akt↓,
PTEN↑,
ChemoSen↑, Chemopreventive/ chemotherapeutic effects of honokiol in various malignancies: preclinical studies
chemoP↑,
COX2↓, honokiol was found to inhibit UVB-induced expression of cyclooxygenase-2, prostaglandin E2, proliferating cell nuclear antigen and pro-inflammatory cytokines, such as TNF-α, interleukin (IL)-1β and IL-6 in the skin
PGE2↓,
TNF-α↓,
IL1β↓,
IL6↓,
Casp3↑, release of caspases-3, -8 and -9as well as poly (ADP-ribose) polymerase (PARP) cleavage and p53 activation upon honokiol treatment that led to DNA fragmentation
Casp8↑,
Casp9↑,
cl‑PARP↑,
DNAdam↑,
Cyt‑c↑, translocation of cytochrome c to cytosol in human melanoma cell lines
RadioS↑, liposomal honokiol for 24 h showed a higher radiation enhancement ratio (~ two-fold) as compared to the radiation alone,
RAS↓, Honokiol also caused suppression of Ras activation
BBB↑, honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth
BioAv↓, Due to the concerns about poor aqueous solubility, liposomal formulations of honokiol have been developed and tested for their pharmacokinetics
Half-Life↝, In another comparative study, plasma honokiol concentrations was maintained above 30 and 10 μg/mL for 24 and 48 hours, respectively, in liposomal honokiol-treated mice, whereas it fell quickly (less than 5 μg/mL) by 12 hours in free honokiol-treated
Half-Life↝, free honokiol has poor GIT absorption, bio-transformed in liver to mono-glucuronide honokiol and sulphated mono-hydroxyhonokiol, ~ 50% is secreted in bile, ~ 60-65% plasma protein bound with elimination half life of (t1/2) of 49.05 – 56.24 minutes.
toxicity↓, These studies suggest that honokiol either alone or as a part of magnolia bark extract does not induce toxicity in animal models and thus could be clinically safe

1154- HNK,  MET,    Honokiol inhibits the growth of hormone-resistant breast cancer cells: its promising effect in combination with metformin
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
cl‑PARP↑,
Bcl-2↓,
ERα↓, combination of honokiol with metformin.

1286- HNK,    The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells
- in-vitro, CLL, NA
Apoptosis↑,
Casp3↑,
Casp8↑,
Casp9↑,
cl‑PARP↑,
Bcl-2↓,
BAX↑,

2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, honokiol caused dose-dependent and time-dependent cell death in human osteosarcoma cells
TumAuto↑, death induced by honokiol were primarily autophagy and apoptosis.
Apoptosis↑,
TumCCA↑, honokiol induced G0/G1 phase arrest,
GRP78/BiP↑, elevated the levels of glucose-regulated protein (GRP)−78, an endoplasmic reticular stress (ERS)-associated protein
ROS↑, increased the production of intracellular reactive oxygen species (ROS)
eff↓, In contrast, reducing production of intracellular ROS using N-acetylcysteine, a scavenger of ROS, concurrently suppressed honokiol-induced cellular apoptosis, autophagy, and cell cycle arrest.
p‑ERK↑, honokiol stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2.
selectivity↑, human fibroblasts showed strong resistance to HNK, the IC50 values for which were 118.9 and 71.5 μM
Ca+2↑, HNK increased intracellular Ca2+ in both HOS and U2OS cells
MMP↓, mitochondrial membrane potential (MMP) sharply decreased following HNK treatment
Casp3↑, HNK markedly activated caspase-3, caspase-9
Casp9↑,
cl‑PARP↑, led to PARP cleavage
Bcl-2↓, expression of Bcl-2, Bcl-xl, and survivin was found to be decreased
Bcl-xL↓,
survivin↓,
LC3B-II↑, HNK increased the level of LC3B-II and Atg5 in HOS and U2OS cells.
ATG5↑,
TumVol↓, HNK at doses of 40 mg/kg resulted in significant decrease in tumor volume and weight, after 7 days of drug administration
TumW↓,
ER Stress↑, ER stress can trigger ROS production through release of calcium

2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, induction of G0/G1 and G2/M cell cycle arrest
CDK2↓, (via the regulation of cyclin-dependent kinase (CDK) and cyclin proteins),
EMT↓, epithelial–mesenchymal transition inhibition via the downregulation of mesenchymal markers
MMPs↓, honokiol possesses the capability to supress cell migration and invasion via the downregulation of several matrix-metalloproteinases
AMPK↑, (activation of 5′ AMP-activated protein kinase (AMPK) and KISS1/KISS1R signalling)
TumCI↓, inhibiting cell migration, invasion, and metastasis, as well as inducing anti-angiogenesis activity (via the down-regulation of vascular endothelial growth factor (VEGFR) and vascular endothelial growth factor (VEGF)
TumCMig↓,
TumMeta↓,
VEGFR2↓,
*antiOx↑, diverse biological activities, including anti-arrhythmic, anti-inflammatory, anti-oxidative, anti-depressant, anti-thrombocytic, and anxiolytic activities
*Inflam↓,
*BBB↑, Due to its ability to cross the blood–brain barrier
*neuroP↑, beneficial towards neuronal protection through various mechanism, such as the preservation of Na+/K+ ATPase, phosphorylation of pro-survival factors, preservation of mitochondria, prevention of glucose, reactive oxgen species (ROS), and inflammatory
*ROS↓,
Dose↝, Generally, the concentrations used for the in vitro studies are between 0–150 μM
selectivity↑, Interestingly, honokiol has been shown to exhibit minimal cytotoxicity against on normal cell lines, including human fibroblast FB-1, FB-2, Hs68, and NIH-3T3 cells
Casp3↑, ↑ Caspase-3 & caspase-9
Casp9↑,
NOTCH1↓, Inhibition of Notch signalling: ↓ Notch1 & Jagged-1;
cycD1↓, ↓ cyclin D1 & c-Myc;
cMyc↓,
P21?, ↑ p21WAF1 protein
DR5↑, ↑ DR5 & cleaved PARP
cl‑PARP↑,
P53↑, ↑ phosphorylated p53 & p53
Mcl-1↑, ↓ Mcl-1 protein
p65↓, ↓ p65; ↓ NF-κB
NF-kB↓,
ROS↑, ↑ JNK activation ,Increase ROS activity:
JNK↑,
NRF2↑, ↑ Nrf2 & c-Jun protein activation
cJun↑,
EF-1α↓, ↓ EFGR; ↓ MAPK/PI3K pathway activity
MAPK↓,
PI3K↓,
mTORC1↓, ↓ mTORC1 function; ↑ LKB1 & cytosolic localisation
CSCs↓, Inhibit stem-like characteristics: ↓ Oct4, Nanog & Sox4 protein; ↓ STAT3;
OCT4↓,
Nanog↓,
SOX4↓,
STAT3↓,
CDK4↓, ↓ Cdk2, Cdk4 & p-pRbSer780;
p‑RB1↓,
PGE2↓, ↓ PGE2 production ↓ COX-2 ↑ β-catenin
COX2↓,
β-catenin/ZEB1↑,
IKKα↓, ↓ IKKα
HDAC↓, ↓ class I HDAC proteins; ↓ HDAC activity;
HATs↑, ↑ histone acetyltransferase (HAT) activity; ↑ histone H3 & H4
H3↑,
H4↑,
LC3II↑, ↑ LC3-II
c-Raf↓, ↓ c-RAF
SIRT3↑, ↑ Sirt3 mRNA & protein; ↓ Hif-1α protein
Hif1a↓,
ER Stress↑, ↑ ER stress signalling pathway activation; ↑ GRP78,
GRP78/BiP↑,
cl‑CHOP↑, ↑ cleaved caspase-9 & CHOP;
MMP↓, mitochondrial depolarization
PCNA↓, ↓ cyclin B1, cyclin D1, cyclin D2 & PCNA;
Zeb1↓, ↓ ZEB2 Inhibit
NOTCH3↓, ↓ Notch3/Hes1 pathway
CD133↓, ↓ CD133 & Nestin protein
Nestin↓,
ATG5↑, ↑ Atg7 protein activation; ↑ Atg5;
ATG7↑,
survivin↓, ↓ Mcl-1 & survivin protein
ChemoSen↑, honokiol potentiated the apoptotic effect of both doxorubicin and paclitaxel against human liver cancer HepG2 cells.
SOX2↓, Honokiol was shown to downregulate the expression of Oct4, Nanog, and Sox2 which were known to be expressed in osteosarcoma, breast carcinoma and germ cell tumours
OS↑, Lipo-HNK was also shown to prolong survival and induce intra-tumoral apoptosis in vivo.
P-gp↓, Honokiol was shown to downregulate the expression of P-gp at mRNA and protein levels in MCF-7/ADR, a human breast MDR cancer cell line
Half-Life↓, For i.v. administration, it has been found that there was a rapid rate of distribution followed by a slower rate of elimination (elimination half-life t1/2 = 49.22 min and 56.2 min for 5 mg or 10 mg of honokiol, respectively
Half-Life↝, male and female dogs was assessed. The elimination half-life (t1/2 in hours) was found to be 20.13 (female), 9.27 (female), 7.06 (male), 4.70 (male), and 1.89 (male) after administration of doses of 8.8, 19.8, 3.9, 44.4, and 66.7 mg/kg, respectively.
eff↑, Apart from that, epigallocatechin-3-gallate functionalized chitin loaded with honokiol nanoparticles (CE-HK NP), developed by Tang et al. [224], inhibit HepG2
BioAv↓, extensive biotransformation of honokiol may contribute to its low bioavailability.

2867- HNK,    Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway
- in-vitro, Nor, C2C12
*antiOx↑, known to have antioxidant activity, but its mechanism of action remains unclear.
*ROS↓, honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation.
*Bcl-2↑, up-regulation of Bcl-2 and down-regulation of Bax,
*BAX↓,
Casp9∅, in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose)
Casp3∅,
cl‑PARP∅,
Cyt‑c?, e blocking of cytochrome c release to the cytoplasm


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AMPK↑,1,   angioG↓,1,   Apoptosis↑,2,   ATG5↑,2,   ATG7↑,1,   BAX↑,1,   BBB↑,1,   Bcl-2↓,3,   Bcl-xL↓,1,   BioAv↓,2,   BioAv↝,1,   Ca+2↑,1,   Casp3↑,4,   Casp3∅,1,   Casp8↑,2,   Casp9↑,4,   Casp9∅,1,   CD133↓,1,   CDK2↓,1,   CDK4↓,1,   chemoP↑,1,   ChemoSen↑,2,   cl‑CHOP↑,1,   cJun↑,1,   cMyc↓,1,   COX2↓,2,   CSCs↓,1,   cSrc↓,1,   cycD1↓,1,   Cyt‑c↑,1,   Cyt‑c?,1,   DNAdam↑,1,   Dose↝,1,   DR5↑,1,   EF-1α↓,1,   eff↓,1,   eff↑,1,   EGFR↓,1,   EMT↓,1,   ER Stress↑,2,   ERK↓,1,   p‑ERK↑,1,   ERα↓,1,   GRP78/BiP↑,2,   H3↑,1,   H4↑,1,   Half-Life↓,1,   Half-Life↝,3,   HATs↑,1,   HDAC↓,1,   Hif1a↓,1,   IKKα↓,1,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   JAK1↓,1,   JAK2↓,1,   JNK↑,1,   LC3B-II↑,1,   LC3II↑,1,   MAPK↓,1,   Mcl-1↑,1,   MMP↓,2,   MMPs↓,1,   mTOR↓,1,   mTORC1↓,1,   Nanog↓,1,   Nestin↓,1,   NF-kB↓,2,   NOTCH1↓,1,   NOTCH3↓,1,   NRF2↑,1,   OCT4↓,1,   OS↑,1,   P-gp↓,1,   P21?,1,   P53↑,1,   p65↓,1,   cl‑PARP↑,5,   cl‑PARP∅,1,   PCNA↓,1,   PGE2↓,2,   PI3K↓,1,   PTEN↑,1,   RadioS↑,1,   c-Raf↓,1,   RAS↓,1,   p‑RB1↓,1,   ROS↑,2,   selectivity↑,2,   SIRT3↑,1,   SOX2↓,1,   SOX4↓,1,   STAT3↓,2,   survivin↓,2,   TNF-α↓,1,   toxicity↓,1,   TumAuto↑,1,   TumCCA↑,2,   TumCD↑,1,   TumCI↓,2,   TumCMig↓,1,   TumCP↓,1,   TumMeta↓,2,   TumVol↓,1,   TumW↓,1,   VEGFR2↓,1,   Zeb1↓,1,   β-catenin/ZEB1↑,1,  
Total Targets: 110

Results for Effect on Normal Cells:
antiOx↑,2,   BAX↓,1,   BBB↑,1,   Bcl-2↑,1,   Inflam↓,1,   neuroP↑,1,   ROS↓,2,  
Total Targets: 7

Scientific Paper Hit Count for: PARP, poly ADP-ribose polymerase (PARP) cleavage
6 Honokiol
1 Metformin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:94  Target#:239  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page