condition found
Features: |
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms. -considered to have antioxidant properties -low oral bioavailability and difficulty in intravenous administration -the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility. Pathways: -Inhibit NF-κB activation -Downregulate STAT3 signalin -Inhibiting the PI3K/Akt pathway, -Inhibition of mTOR -Influences various MAPK cascades—including ERK, JNK, and p38 -Inhibition of EGFR -Inhibiting Notch pathway (CSCs) -GPx4 inhibit -Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways -Disrupt the mitochondrial membrane potential in cancer cells. -Reported to increase ROS production in cancer cells -Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly. - is well-known in the research community for its role in activating SIRT3 -Note half-life 40–60 minutes BioAv Pathways: - induce ROS production in cancer cells, and typically lowers ROS in normal cells - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ Prx - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDH">LDHA↓, HK2↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓, - inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
LDH is a general term that refers to the enzyme that catalyzes the interconversion of lactate and pyruvate. LDH is a tetrameric enzyme, meaning it is composed of four subunits. LDH refers to the enzyme as a whole, while LDHA specifically refers to the M subunit. Elevated LDHA levels are often associated with poor prognosis and aggressive tumor behavior, similar to elevated LDH levels. However, it's worth noting that some studies have shown that LDHA is a more specific and sensitive biomarker for cancer than total LDH, as it is more closely associated with the Warburg effect and cancer metabolism. Dysregulated LDH activity contributes significantly to cancer development, promoting the Warburg effect (Chen et al., 2007), which involves increased glucose uptake and lactate production, even in the presence of oxygen, to meet the energy demands of rapidly proliferating cancer cells (Warburg and Minami, 1923; Dai et al., 2016b). LDHA overexpression favors pyruvate to lactate conversion, leading to tumor microenvironment acidification and aiding cancer progression and metastasis. Inhibitors: Flavonoids, a group of polyphenols abundant in fruit, vegetables, and medicinal plants, function as LDH inhibitors. • Galloflavin: A flavonoid compound found in the plant Galphimia gracilis, which has been shown to inhibit LDH and have anti-cancer activity. • Fisetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity. • Quercetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity. • Kaempferol: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity. • Resveratrol: A polyphenol compound found in grapes and other plants, which has been shown to inhibit LDH and have anti-cancer activity. • Curcumin: A polyphenol compound found in turmeric, which has been shown to inhibit LDH and have anti-cancer activity. • Berberine: A compound found in the plant Berberis, which has been shown to inhibit LDH and have anti-cancer activity. • Honokiol: A lignan compound found in the plant Magnolia, which has been shown to inhibit LDH and have anti-cancer activity. • Silibinin: A flavonoid compound found in milk thistle, which has been shown to inhibit LDH and have anti-cancer activity. Others:Ursolic acid, Oleanolic acid, Limonin, Allicin (garlic), Taurine |
2901- | HNK,  | doxoR,  |   | Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts |
- | in-vivo, | Nor, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:94 Target#:906 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid