condition found tbRes List
HNK, Honokiol: Click to Expand ⟱
Features:
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.
-considered to have antioxidant properties
-low oral bioavailability and difficulty in intravenous administration
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.

Pathways:
-Inhibit NF-κB activation
-Downregulate STAT3 signalin
-Inhibiting the PI3K/Akt pathway,
-Inhibition of mTOR
-Influences various MAPK cascades—including ERK, JNK, and p38
-Inhibition of EGFR
-Inhibiting Notch pathway (CSCs)
-GPx4 inhibit
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways
-Disrupt the mitochondrial membrane potential in cancer cells.
-Reported to increase ROS production in cancer cells
-Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.
- is well-known in the research community for its role in activating SIRT3

-Note half-life 40–60 minutes
BioAv
Pathways:
- induce ROS production in cancer cells, and typically lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ Prx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF, HIF-1α↓, Notch↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


VEGF, Vascular endothelial growth factor: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
A signal protein produced by many cells that stimulates the formation of blood vessels. Vascular endothelial growth factor (VEGF) is a signal protein that plays a crucial role in angiogenesis, the process by which new blood vessels form from existing ones. This process is vital for normal physiological functions, such as wound healing and the menstrual cycle, but it is also a key factor in the growth and spread of tumors in cancer.
Because of its significant role in tumor growth and progression, VEGF has become a target for cancer therapies. Anti-VEGF therapies, such as monoclonal antibodies (e.g., bevacizumab) and small molecule inhibitors, aim to inhibit the action of VEGF, thereby reducing blood supply to tumors and limiting their growth. These therapies have been used in various types of cancer, including colorectal, lung, and breast cancer.


Scientific Papers found: Click to Expand⟱
2883- HNK,    Honokiol targets mitochondria to halt cancer progression and metastasis
- Review, Var, NA
ChemoSen↑, Combination of HNK with many traditional chemotherapeutic drugs as well as radiation sensitizes cancer cells to apoptotic death
BBB↓, HNK is also capable of crossing the BBB
Ca+2↑, HNK promotes human glioblastoma cancer cell apoptosis via regulation of Ca(2+) channels
Cyt‑c↑, release of mitochondrial cytochrome c and activation of caspase-3
Casp3↑,
chemoP↑, potent chemopreventive agent against lung SCC development in a carcinogen-induced lung SCC murine model
OCR↓, HNK treatment results in a decreased oxygen consumption rate (OCR) in whole intact cells, rapidly, and persistently inhibiting mitochondrial respiration, which leads to the induction of apoptosis
mitResp↓,
Apoptosis↑,
RadioS↑, Honokiol as a chemo- and radiosensitizer
NF-kB↓, HNK as an anticancer drug is its potential to inhibit multiple important survival pathways, such as NF-B and Akt
Akt↓,
TNF-α↓, by inhibiting TNF-induced nerve growth factor IB expression in breast cancer cells
PGE2↓, reduced prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) secretion levels
VEGF↓,
NO↝, HNK inhibits cancer cell migration by targeting nitric oxide and cyclooxygenase-2 or Ras GTPase-activating-like protein (IQGAP1) [
COX2↓,
RAS↓,
EMT↓, HNK can reverse the epithelial-mesenchymal-transition (EMT) process, which is a key step during embryogenesis, cancer invasion, and metastasis,
Snail↓, HNK reduced the expression levels of Snail, N-cadherin and -catenin, which are mesenchymal markers, but increased E-cadherin,
N-cadherin↓,
β-catenin/ZEB1↓,
E-cadherin↑,
ER Stress↑, induction of ER stress
p‑STAT3↓, HNK inhibited STAT3 phosphorylation
EGFR↓, inhibiting EGFR phosphorylation and its downstream signaling pathways such as the mTOR signaling pathway
mTOR↓,
mt-ROS↑, We demonstrated that HNK treatment suppresses mitochondrial respiration and increases generation of ROS in the mitochondria, leading to the induction of apoptosis in lung cancer cells
PI3K↓, inhibition of PI3K/Akt/ mTOR, EMT, and Wnt signaling pathways.
Wnt↓,

2894- HNK,    Pharmacological features, health benefits and clinical implications of honokiol
- Review, Var, NA - Review, AD, NA
*BioAv↓, HNK showed poor aqueous solubility due to phenolic hydroxyl groups forming intramolecular hydrogen bonds and poor solubility in water (
*neuroP↑, HNK has the accessibility to reach the neuronal tissue by crossing the BBB and showing neuroprotective effects
*BBB↑,
*ROS↓, fig 2
*Keap1↑,
*NRF2↑,
*Casp3↓,
*SIRT3↑,
*Rho↓,
*ERK↓,
*NF-kB↓,
angioG↓,
RAS↓,
PI3K↓,
Akt↓,
mTOR↓,
*memory↑, oral administration of HNK (1 mg/kg) in senescence-accelerated mice prevents age-related memory and learning deficits
*Aβ↓, in Alzheimer’s disease, HNK significantly reduces neurotoxicity of aggregated Ab
*PPARγ↑, Furthermore, the expression of PPARc and PGC1a was increased by HNK, suggesting its beneficial impact on energy metabolism
*PGC-1α↑,
NF-kB↓, activation of NFjB was suppressed by HNK via suppression of nuclear translocation and phosphorylation of the p65 subunit and further instigated apoptosis by enhancing TNF-a
Hif1a↓, HNK has anti-oxidative properties and can downregulate the HIF-1a protein, inhibiting hypoxia- related signaling pathways
VEGF↓, renal cancer, via decreasing the vascular endothelial growth factor (VEGF) and heme-oxygenase-1 (HO-1)
HO-1↓,
Foxm1↓, HNK interaction with the FOXM1 oncogenic transcription factor inhibits cancer cells
p27↑, HNK treatment upregulates the expression of CDK inhibitor p27 and p21, whereas it downregulates the expression of CDK2/4/6 and cyclin D1/2
P21↑,
CDK2↓,
CDK4↓,
CDK6↓,
cycD1↓,
Twist↓, HNK averted the invasion of urinary bladder cancer cells by downregulating the steroid receptor coactivator, Twist1 and Matrix metalloproteinase-2
MMP2↓,
Rho↑, By activating the RhoA, ROCK and MLC signaling, HNK inhibits the migration of highly metastatic renal cell carcinoma
ROCK1↑,
TumCMig↓,
cFLIP↓, HNK can be used to suppress c-FLIP, the apoptosis inhibitor.
BMPs↑, HNK treatment increases the expression of BMP7 protein
OCR↑, HNK might increase the oxygen consumption rate while decreasing the extracellular acidification rate in breast cancer cells.
ECAR↓,
*AntiAg↑, It also suppresses the platelet aggregation
*cardioP↑, HNK is an attractive cardioprotective agent because of its strong antioxidative properties
*antiOx↑,
*ROS↓, HNK treatment reduced cellular ROS production and decreased mitochondrial damage in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation
P-gp↓, The expres- sion of P-gp at mRNA and protein levels is reduced in HNK treatment on human MDR and MCF-7/ADR breast cancer cell lines

2897- HNK,    Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma Cells
- in-vitro, Lung, PC9 - in-vitro, Lung, A549
TumCP↓, Honokiol Inhibits Cell Proliferation in Both A549 Cells and PC-9 Cells
Apoptosis↑, Honokiol Induces Apoptosis in PC-9 Cells
EGFR↓, Honokiol Suppresses Lyn Kinase and EGFR Signaling Pathway in PC-9 Cells
PI3K↓, led to a reduction of EGFR/PI3K/AKT and STAT3, and their phosphorylation status.
Akt↓,
STAT3↓,
TumCI↓, honokiol inhibits PC-9 cell proliferation, invasion and induces apoptosis through targeting Lyn kinase and Lyn-mediated EGFR signaling pathway.
TNF-α↑, Honokiol has efficacy to enhance the activation of TNF-α, in this way, honokiol inhibits activation of NF-κB and Akt. As a result, honokiol dramatically decreases expression level of NF-κB target genes, such as VEGF, MMP-9, and COX-2.
NF-kB↓,
VEGF↓,
MMP9↓,
COX2↓,

2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6),
*ROS↓,
*TNF-α↓,
*IL10↓,
*IL6↓,
eIF2α↑, Bcl-2, phosphorylated eIF2α, CHOP,GRP78, Bax, cleaved caspase-9 and phosphorylated PERK
CHOP↑,
GRP78/BiP↑,
BAX↑,
cl‑Casp9↑,
p‑PERK↑,
ER Stress↑, endoplasmic reticulum stress and proteins in apoptosis in 95-D and A549 cells
Apoptosis↑,
MMPs↓, decrease in levels of matrix metal-mloproteinases, P-glycoprotein expression, the formation of mammosphere, H3K27 methyltransferase, c-FLIP, level of CXCR4 receptor,pluripotency-factors, Twist-1, class I histone deacetylases, steroid receptor co
cFLIP↓,
CXCR4↓,
Twist↓,
HDAC↓,
BMPs↑, enhancement in Bax protein, and (BMP7), as well as interference with an activator of transcription 3 (STAT3), (mTOR), (EGFR), (NF-kB) and Shh
p‑STAT3↓, secreased the phosphorylation of STAT3
mTOR↓,
EGFR↓,
NF-kB↓,
Shh↓,
VEGF↓, induce apoptosis, and regulate the vascular endothelial growth factor-A expression (VEGF-A)
tumCV↓, human glioma cell lines (U251 and U-87 MG) through inhibition of colony formation, glioma cell viability, cell migration, invasion, suppression of ERK and AKT signalling cascades, apoptosis induction, and reduction of Bcl-2 expression.
TumCMig↓,
TumCI↓,
ERK↓,
Akt↓,
Bcl-2↓,
Nestin↓, increased the Bax expression, lowered the CD133, EGFR, and Nesti
CD133↓,
p‑cMET↑, HKL through the downregulating the phosphorylation of c-Met phosphorylation and stimulation of Ras,
RAS↑,
chemoP↑, Cheng and coworker determined the chemopreventive role of HKL against the proliferation of renal cell carcinoma (RCC) 786‑0 cells through multiple mechanism
*NRF2↑, , HKL also effectively activate the Nrf2/ARE pathway and reverse this pancreatic dysfunction in in vivo and in vitro model
*NADPH↓, (HUVECs) such as inhibition of NADPH oxidase activity, suppression of p22 (phox) protein expression, Rac-1 phosphorylation, reactive oxygen species production, inhibition of degradation of Ikappa-B-alpha, and suppression of activity of of NF-kB
*p‑Rac1↓,
*ROS↓,
*IKKα↑,
*NF-kB↓,
*COX2↓, Furthermore, HKL treatment the inhibited cyclooxygenase (COX-2) upregulation, reduces prostaglandin E2 production, enhanced caspase-3 activity reduction
*PGE2↓,
*Casp3↓,
*hepatoP↑, compound also displayed hepatoprotective action against oxidative injury in tert-butyl hydroperoxide (t-BHP)-injured AML12 liver cells in in vitro model
*antiOx↑, compound reduces the level of acetylation on SOD2 to stimulate its antioxidative action, which results in reduced reactive oxygen species aggregation in AML12 cells
*GSH↑, HKL prevents oxidative damage induced by H2O2 via elevating antioxidant enzymes levels which includes glutathione and catalase and promotes translocation and activation transcription factor Nrf2
*Catalase↑,
*RenoP↑, imilarly, the compound protects renal reperfusion/i-schemia injury (IRI) in adult male albino Wistar rats via reducing theactivities of serum alkaline phosphatase (ALP), aspartate aminotrans- ferase (AST) and alanine aminotransferase (ALT)
*ALP↓,
*AST↓,
*ALAT↓,
*neuroP↑, Several reports and works have shown that HKL displays some neuroprotective properties
*cardioP↑, Cardioprotection
*HO-1↑, the expression level of heme oxygenase-1 (HO-1)was remarkably up-regulated and miR-218-5p was significantly down-regulated in septic mice treated with HKL
*Inflam↓, anti-inflammatory action of HKL at dose of 10 mg/kg in the muscle layer of mice

2871- HNK,    Antihyperalgesic Properties of Honokiol in Inflammatory Pain Models by Targeting of NF-κB and Nrf2 Signaling
- in-vivo, Nor, NA
*TNF-α↓, honokiol significantly reduced the expression levels of tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF).
*IL1β↓,
*IL6↓,
*VEGF↓,
*NRF2↑, honokiol was also found to potentiate the expression of nuclear factor erythroid 2–related factor 2 (Nrf2), superoxide dismutase 2 (SOD2), and heme oxygenase-1 (HO-1) levels.
*SOD2↑,
*HO-1↑,
*Inflam↓, honokiol reduced the inflammation
*Pain↓, honokiol might be a promising candidate as a new treatment for pain. results showed that honokiol remarkably reduced pain response throughout the chronic inflammatory pain model
*NO↓, Honokiol significantly reduced NO production after 6 days of treatment
toxicity↓, Treating mice with honokiol for 6 days showed no visible sign of toxicity or ill health. Obtained values, which were used as an indicator of liver and renal function, are shown in the table


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,4,   angioG↓,1,   Apoptosis↑,3,   BAX↑,1,   BBB↓,1,   Bcl-2↓,1,   BMPs↑,2,   Ca+2↑,1,   Casp3↑,1,   cl‑Casp9↑,1,   CD133↓,1,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   cFLIP↓,2,   chemoP↑,2,   ChemoSen↑,1,   CHOP↑,1,   p‑cMET↑,1,   COX2↓,2,   CXCR4↓,1,   cycD1↓,1,   Cyt‑c↑,1,   E-cadherin↑,1,   ECAR↓,1,   EGFR↓,3,   eIF2α↑,1,   EMT↓,1,   ER Stress↑,2,   ERK↓,1,   Foxm1↓,1,   GRP78/BiP↑,1,   HDAC↓,1,   Hif1a↓,1,   HO-1↓,1,   mitResp↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mTOR↓,3,   N-cadherin↓,1,   Nestin↓,1,   NF-kB↓,4,   NO↝,1,   OCR↓,1,   OCR↑,1,   P-gp↓,1,   P21↑,1,   p27↑,1,   p‑PERK↑,1,   PGE2↓,1,   PI3K↓,3,   RadioS↑,1,   RAS↓,2,   RAS↑,1,   Rho↑,1,   ROCK1↑,1,   mt-ROS↑,1,   Shh↓,1,   Snail↓,1,   STAT3↓,1,   p‑STAT3↓,2,   TNF-α↓,1,   TNF-α↑,1,   toxicity↓,1,   TumCI↓,2,   TumCMig↓,2,   TumCP↓,1,   tumCV↓,1,   Twist↓,2,   VEGF↓,4,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 73

Results for Effect on Normal Cells:
ALAT↓,1,   ALP↓,1,   AntiAg↑,1,   antiOx↑,2,   AST↓,1,   Aβ↓,1,   BBB↑,1,   BioAv↓,1,   cardioP↑,2,   Casp3↓,2,   Catalase↑,1,   COX2↓,1,   ERK↓,1,   GSH↑,1,   hepatoP↑,1,   HO-1↑,2,   IKKα↑,1,   IL10↓,1,   IL1β↓,1,   IL6↓,2,   Inflam↓,2,   Keap1↑,1,   memory↑,1,   NADPH↓,1,   neuroP↑,2,   NF-kB↓,2,   NO↓,1,   NRF2↑,3,   P-gp↓,1,   Pain↓,1,   PGC-1α↑,1,   PGE2↓,1,   PPARγ↑,1,   p‑Rac1↓,1,   RenoP↑,1,   Rho↓,1,   ROS↓,4,   SIRT3↑,1,   SOD2↑,1,   TNF-α↓,2,   VEGF↓,1,  
Total Targets: 41

Scientific Paper Hit Count for: VEGF, Vascular endothelial growth factor
5 Honokiol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:94  Target#:334  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page