condition found tbRes List
HNK, Honokiol: Click to Expand ⟱
Features:
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.
-considered to have antioxidant properties
-low oral bioavailability and difficulty in intravenous administration
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.

Pathways:
-Inhibit NF-κB activation
-Downregulate STAT3 signalin
-Inhibiting the PI3K/Akt pathway,
-Inhibition of mTOR
-Influences various MAPK cascades—including ERK, JNK, and p38
-Inhibition of EGFR
-Inhibiting Notch pathway (CSCs)
-GPx4 inhibit
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways
-Disrupt the mitochondrial membrane potential in cancer cells.
-Reported to increase ROS production in cancer cells
-Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.
- is well-known in the research community for its role in activating SIRT3

-Note half-life 40–60 minutes
BioAv
Pathways:
- induce ROS production in cancer cells, and typically lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ Prx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, ECAR, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ECAR, Extracellular Acidification Rate: Click to Expand ⟱
Source:
Type:
ECAR (Extracellular Acidification Rate) is a measure of the rate at which cells release acidic byproducts, such as lactic acid, into the extracellular environment. In the context of cancer, ECAR is often used as a proxy for glycolytic activity, as cancer cells often exhibit increased glycolysis, even in the presence of oxygen.

Studies have shown that cancer cells often have a higher ECAR compared to normal cells, indicating that they are producing more acidic byproducts. This is thought to be due to the fact that cancer cells often rely more heavily on glycolysis for energy production, even in the presence of oxygen.
-ECAR reflects the glycolysis activity



Scientific Papers found: Click to Expand⟱
2894- HNK,    Pharmacological features, health benefits and clinical implications of honokiol
- Review, Var, NA - Review, AD, NA
*BioAv↓, HNK showed poor aqueous solubility due to phenolic hydroxyl groups forming intramolecular hydrogen bonds and poor solubility in water (
*neuroP↑, HNK has the accessibility to reach the neuronal tissue by crossing the BBB and showing neuroprotective effects
*BBB↑,
*ROS↓, fig 2
*Keap1↑,
*NRF2↑,
*Casp3↓,
*SIRT3↑,
*Rho↓,
*ERK↓,
*NF-kB↓,
angioG↓,
RAS↓,
PI3K↓,
Akt↓,
mTOR↓,
*memory↑, oral administration of HNK (1 mg/kg) in senescence-accelerated mice prevents age-related memory and learning deficits
*Aβ↓, in Alzheimer’s disease, HNK significantly reduces neurotoxicity of aggregated Ab
*PPARγ↑, Furthermore, the expression of PPARc and PGC1a was increased by HNK, suggesting its beneficial impact on energy metabolism
*PGC-1α↑,
NF-kB↓, activation of NFjB was suppressed by HNK via suppression of nuclear translocation and phosphorylation of the p65 subunit and further instigated apoptosis by enhancing TNF-a
Hif1a↓, HNK has anti-oxidative properties and can downregulate the HIF-1a protein, inhibiting hypoxia- related signaling pathways
VEGF↓, renal cancer, via decreasing the vascular endothelial growth factor (VEGF) and heme-oxygenase-1 (HO-1)
HO-1↓,
Foxm1↓, HNK interaction with the FOXM1 oncogenic transcription factor inhibits cancer cells
p27↑, HNK treatment upregulates the expression of CDK inhibitor p27 and p21, whereas it downregulates the expression of CDK2/4/6 and cyclin D1/2
P21↑,
CDK2↓,
CDK4↓,
CDK6↓,
cycD1↓,
Twist↓, HNK averted the invasion of urinary bladder cancer cells by downregulating the steroid receptor coactivator, Twist1 and Matrix metalloproteinase-2
MMP2↓,
Rho↑, By activating the RhoA, ROCK and MLC signaling, HNK inhibits the migration of highly metastatic renal cell carcinoma
ROCK1↑,
TumCMig↓,
cFLIP↓, HNK can be used to suppress c-FLIP, the apoptosis inhibitor.
BMPs↑, HNK treatment increases the expression of BMP7 protein
OCR↑, HNK might increase the oxygen consumption rate while decreasing the extracellular acidification rate in breast cancer cells.
ECAR↓,
*AntiAg↑, It also suppresses the platelet aggregation
*cardioP↑, HNK is an attractive cardioprotective agent because of its strong antioxidative properties
*antiOx↑,
*ROS↓, HNK treatment reduced cellular ROS production and decreased mitochondrial damage in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation
P-gp↓, The expres- sion of P-gp at mRNA and protein levels is reduced in HNK treatment on human MDR and MCF-7/ADR breast cancer cell lines

2071- HNK,    Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient
- Review, Nor, HaCaT
*ROS↓, Magnolia officinalis (M. officinalis) extract significantly lowered the levels of ROS in senescent fibroblasts.
*antiOx↑, honokiol was demonstrated as a core ingredient of M. officinalis extract that exhibits antioxidant effects.
*AntiAge↑, new approaches to anti–aging treatments
*MMP↑, increases MMP
*ECAR↓, senescent fibroblasts treated with M. officinalis extract had lower ECAR values than those treated with DMSO, suggesting that M. officinalis treatment lowed glycolysis rate
*Glycolysis↓, honokiol, similar to M. officinalis, reduced the dependence of glycolysis as an energy source, indicating restoration of mitochondrial function by honokiol.
*PAR-2↓, downregulation of PAR–2 expression by M. officinalis may reduce skin pigmentation.
*CXCL12↑, upregulation of SDF–1 expression by M. officinalis may reduce skin pigmentation.
*BMAL1↑, activation of Bmal–1 expression by M. officinalis promote skin turnover.
*mt-ROS↓, compared to M. officinalis extract, honokiol at 1 and 10 μM was more effective in lowering mitochondrial ROS levels
*OXPHOS↓, Inhibition of oxidative phosphorylation and induction of a compensatory shift toward glycolysis resulted in lower compensatory glycolysis in honokiol–treated senescent fibroblasts

960- HNK,    Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231
OCR↑, which resulted in an increase in OCR and a decrease in ECAR, glucose uptake, lactic acid production and ATP production.
ECAR↓,
GlucoseCon↓, decreased glucose uptake, lactate production and ATP production in cancer cells.
lactateProd↓,
ATP↓,
Glycolysis↓,
Hif1a↓,
GLUT1↓,
HK2↓,
PDK1↓,
Apoptosis↑,
LDHA↓, upregulation of LDHA mediated by HIF-1α promoted the formation of lactic acid from pyruvate, which contributed to the acidification of the tumor microenvironment. Our experimental observation results showed that these changes were reversed by HNK


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   angioG↓,1,   Apoptosis↑,1,   ATP↓,1,   BMPs↑,1,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   cFLIP↓,1,   cycD1↓,1,   ECAR↓,2,   Foxm1↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,1,   Hif1a↓,2,   HK2↓,1,   HO-1↓,1,   lactateProd↓,1,   LDHA↓,1,   MMP2↓,1,   mTOR↓,1,   NF-kB↓,1,   OCR↑,2,   P-gp↓,1,   P21↑,1,   p27↑,1,   PDK1↓,1,   PI3K↓,1,   RAS↓,1,   Rho↑,1,   ROCK1↑,1,   TumCMig↓,1,   Twist↓,1,   VEGF↓,1,  
Total Targets: 35

Results for Effect on Normal Cells:
AntiAg↑,1,   AntiAge↑,1,   antiOx↑,2,   Aβ↓,1,   BBB↑,1,   BioAv↓,1,   BMAL1↑,1,   cardioP↑,1,   Casp3↓,1,   CXCL12↑,1,   ECAR↓,1,   ERK↓,1,   Glycolysis↓,1,   Keap1↑,1,   memory↑,1,   MMP↑,1,   neuroP↑,1,   NF-kB↓,1,   NRF2↑,1,   OXPHOS↓,1,   PAR-2↓,1,   PGC-1α↑,1,   PPARγ↑,1,   Rho↓,1,   ROS↓,3,   mt-ROS↓,1,   SIRT3↑,1,  
Total Targets: 27

Scientific Paper Hit Count for: ECAR, Extracellular Acidification Rate
3 Honokiol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:94  Target#:847  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page