condition found tbRes List
HNK, Honokiol: Click to Expand ⟱
Features:
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.
-considered to have antioxidant properties
-low oral bioavailability and difficulty in intravenous administration
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.

Pathways:
-Inhibit NF-κB activation
-Downregulate STAT3 signalin
-Inhibiting the PI3K/Akt pathway,
-Inhibition of mTOR
-Influences various MAPK cascades—including ERK, JNK, and p38
-Inhibition of EGFR
-Inhibiting Notch pathway (CSCs)
-GPx4 inhibit
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways
-Disrupt the mitochondrial membrane potential in cancer cells.
-Reported to increase ROS production in cancer cells
-Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.
- is well-known in the research community for its role in activating SIRT3

-Note half-life 40–60 minutes
BioAv
Pathways:
- induce ROS production in cancer cells, and typically lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ Prx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


cognitive, cognitive: Click to Expand ⟱
Source:
Type:
Cognitive


Scientific Papers found: Click to Expand⟱
2869- HNK,    Nature's neuroprotector: Honokiol and its promise for Alzheimer's and Parkinson's
- Review, AD, NA - Review, Park, NA
*neuroP↑, neuroprotective, anti-oxidant, anti-apoptotic, neuromodulating, anti-inflammatory, and many more qualities, honokiol,
*Inflam↓,
*motorD↑, degradation of dopaminergic neurons in Parkinson's disease and improving motor function.
*Aβ↓, Alzheimer's disease, honokiol showed promise in lowering the production of amyloid-beta (Aβ) plaques, phosphorylating tau, and enhancing cognitive performance
*p‑tau↓,
*cognitive↑,
*memory↑, prevented Acetylcholinesterase activity from elevation as well as improved acetylcholine levels, and improved learning, and memory deficits via increased ERK1/2 and Akt phosphorylation
*ERK↑,
*p‑Akt↑,
*PPARγ↑, honokiol has been reported to elevate PPARγ levels in APPswe/PS1dE9 mice as PPARγ is related to ani-inflammatory
*PGC-1α↑, honokiol boosted the expression of PGC1α and PPARγ
*MMP↑, as well as reduced elevated mitochondrial membrane potential and mitochondrial ROS
*mt-ROS↓,
*SIRT3↑, Honokiol has been found as a dual SIRT-3 activator and PPAR-γ agonist that reduced oxidative stress markers within cells and changed the AMPK pathway
*IL1β↓, honokiol prevented restraint stress-induced cognitive dysfunction by reducing the hippocampus's production of IL-1β, TNF-α, glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP)
*TNF-α↓,
*GRP78/BiP↓,
*CHOP↓,
*NF-kB↓, Additionally, the neuroprotective benefits of honokiol in mice with Aβ-induced learning and memory impairment have been attributed to the inactivation of NF-κB
*GSK‐3β↓, Treatment of honokiol in PC12 cells resulted in reduced GSK-3β and induced β-catenin which effectively showed the neuroprotective and anti-oxidant effect in AD therapy
*β-catenin/ZEB1↑,
*Ca+2↓, , anti-apoptotic effect via reduced caspase 3 levels, and protected membrane injury by reduced calcium level has been investigated in PC12 cells of AD models
*AChE↓, protective effects by serving as an antioxidant, reduced AchE levels, repaired neurofibrillary tangles, reduced NF-kB which downregulates Aβ plaque
*SOD↑, fig1
*Catalase↑,
*GPx↑,

2872- HNK,    Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis
- in-vivo, ALS, NA - NA, Stroke, NA - NA, AD, NA - NA, Park, NA
*eff↑, Honokiol (HNK) has been reported to exert therapeutic effects in several neurologic disease models including ischemia stroke, Alzheimer's disease and Parkinson's disease
*ROS↓, honokiol alleviated cellular oxidative stress by enhancing glutathione (GSH) synthesis and activating the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response element (ARE) pathway.
*GSH↑,
*NRF2↑,
*motorD↑, Importantly, honokiol extended the lifespan of the SOD1-G93A transgenic mice and improved the motor function
*OS↑,
*neuroP↑, honokiol exerted neuroprotection in ALS models.
*BBB↑, due to its strong lipophilic property, honokiol can readily permeate the blood–brain barrier and blood–cerebrospinal fluid barrier.
*cognitive↑, honokiol was shown a beneficial effect on the cognitive impairment in APP/PS1 via ameliorating the mitochondrial dysfunction
*eff↑, Furthermore, honokiol was applied for patent (200310121303.0) for ischemic stroke treatment, and the clinical trials would be started soon in China
*antiOx↑, Honokiol showed strong antioxidant capacity in vitro and protected the yeast against H2O2 induced oxidative damage
*Cyt‑c↑, cytoplasmic release of cytochrome c was markedly decreased
*PGC-1α↑, 10 μmol/L and significantly upregulated the PGC-1α, NRF1, and TFAM protein


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:

Total Targets: 0

Results for Effect on Normal Cells:
AChE↓,1,   p‑Akt↑,1,   antiOx↑,1,   Aβ↓,1,   BBB↑,1,   Ca+2↓,1,   Catalase↑,1,   CHOP↓,1,   cognitive↑,2,   Cyt‑c↑,1,   eff↑,2,   ERK↑,1,   GPx↑,1,   GRP78/BiP↓,1,   GSH↑,1,   GSK‐3β↓,1,   IL1β↓,1,   Inflam↓,1,   memory↑,1,   MMP↑,1,   motorD↑,2,   neuroP↑,2,   NF-kB↓,1,   NRF2↑,1,   OS↑,1,   PGC-1α↑,2,   PPARγ↑,1,   ROS↓,1,   mt-ROS↓,1,   SIRT3↑,1,   SOD↑,1,   p‑tau↓,1,   TNF-α↓,1,   β-catenin/ZEB1↑,1,  
Total Targets: 34

Scientific Paper Hit Count for: cognitive, cognitive
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:94  Target#:557  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page