condition found tbRes List
HNK, Honokiol: Click to Expand ⟱
Features:
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.
-considered to have antioxidant properties
-low oral bioavailability and difficulty in intravenous administration
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.

Pathways:
-Inhibit NF-κB activation
-Downregulate STAT3 signalin
-Inhibiting the PI3K/Akt pathway,
-Inhibition of mTOR
-Influences various MAPK cascades—including ERK, JNK, and p38
-Inhibition of EGFR
-Inhibiting Notch pathway (CSCs)
-GPx4 inhibit
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways
-Disrupt the mitochondrial membrane potential in cancer cells.
-Reported to increase ROS production in cancer cells
-Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.
- is well-known in the research community for its role in activating SIRT3

-Note half-life 40–60 minutes
BioAv
Pathways:
- induce ROS production in cancer cells, and typically lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ Prx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Cyt‑c, cyt-c Release into Cytosol: Click to Expand ⟱
Source:
Type:
Cytochrome c
** The term "release of cytochrome c" ** an increase in level for the cytosol.
Small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis.

The term "release of cytochrome c" refers to a critical step in the process of programmed cell death, also known as apoptosis.
In its new location—the cytosol—cytochrome c participates in the apoptotic signaling pathway by helping to form the apoptosome, which activates caspases that execute cell death.
Cytochrome c is a small protein normally located in the mitochondrial intermembrane space. Its primary role in healthy cells is to participate in the electron transport chain, a process that helps produce energy (ATP) through oxidative phosphorylation.
Mitochondrial outer membrane permeability leads to the release of cytochrome c from the mitochondria into the cytosol.
The release of cytochrome c is a pivotal event in apoptosis where cytochrome c moves from the mitochondria to the cytosol, initiating a chain reaction that leads to programmed cell death.

On the one hand, cytochrome c can promote cancer cell survival and proliferation by regulating the activity of various signaling pathways, such as the PI3K/AKT pathway. This can lead to increased cell growth and resistance to apoptosis, which are hallmarks of cancer.
On the other hand, cytochrome c can also induce apoptosis in cancer cells by interacting with other proteins, such as Apaf-1 and caspase-9. This can lead to the activation of the intrinsic apoptotic pathway, which can result in the death of cancer cells.
Overexpressed in Breast, Lung, Colon, and Prostrate.
Underexpressed in Ovarian, and Pancreatic.


Scientific Papers found: Click to Expand⟱
2879- HNK,    Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function
- in-vitro, Lung, H226 - in-vivo, NA, NA
tumCV↓, honokiol significantly reduced the percentage of bronchial that exhibit abnormal lung SCC histology from 24.4% bronchial in control to 11.0% bronchial in honokiol treated group (p= 0.01) while protecting normal bronchial histology (present in 20.5%
selectivity↑,
TumCP↓, In vitro studies revealed that honokiol inhibited lung SCC cells proliferation, arrested cells at the G1/S cell cycle checkpoint, while also leading to increased apoptosis.
TumCCA↑,
Apoptosis↑,
mt-ROS↑, interfering with mitochondrial respiration is a novel mechanism by which honokiol increased generation of reactive oxygen species (ROS) in the mitochondria, : mitochondrial ROS generation
Casp3↑, cells treated with honokiol showed a significant increase in caspase 3/7 activity, which occurred in dose- and time-dependent manners
Casp7↑,
OCR↓, Honokiol caused a fast and concentration-dependent decrease in basal oxygen consumption rate (OCR) in both cell lines
Cyt‑c↑, cytochrome c release was increased in honokil treated mouse lung SCC tissue
ATP↓, found a dramatic decrease in cellular ATP content
mitResp↓, Honokiol inhibits mitochondrial respiration and decreases ATP levels in H226 and H520 cells, which may elevate AMP and the intracellular AMP/ATP ratio, leading to activation of the AMPK
AMP↑,
AMPK↑,

2883- HNK,    Honokiol targets mitochondria to halt cancer progression and metastasis
- Review, Var, NA
ChemoSen↑, Combination of HNK with many traditional chemotherapeutic drugs as well as radiation sensitizes cancer cells to apoptotic death
BBB↓, HNK is also capable of crossing the BBB
Ca+2↑, HNK promotes human glioblastoma cancer cell apoptosis via regulation of Ca(2+) channels
Cyt‑c↑, release of mitochondrial cytochrome c and activation of caspase-3
Casp3↑,
chemoP↑, potent chemopreventive agent against lung SCC development in a carcinogen-induced lung SCC murine model
OCR↓, HNK treatment results in a decreased oxygen consumption rate (OCR) in whole intact cells, rapidly, and persistently inhibiting mitochondrial respiration, which leads to the induction of apoptosis
mitResp↓,
Apoptosis↑,
RadioS↑, Honokiol as a chemo- and radiosensitizer
NF-kB↓, HNK as an anticancer drug is its potential to inhibit multiple important survival pathways, such as NF-B and Akt
Akt↓,
TNF-α↓, by inhibiting TNF-induced nerve growth factor IB expression in breast cancer cells
PGE2↓, reduced prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) secretion levels
VEGF↓,
NO↝, HNK inhibits cancer cell migration by targeting nitric oxide and cyclooxygenase-2 or Ras GTPase-activating-like protein (IQGAP1) [
COX2↓,
RAS↓,
EMT↓, HNK can reverse the epithelial-mesenchymal-transition (EMT) process, which is a key step during embryogenesis, cancer invasion, and metastasis,
Snail↓, HNK reduced the expression levels of Snail, N-cadherin and -catenin, which are mesenchymal markers, but increased E-cadherin,
N-cadherin↓,
β-catenin/ZEB1↓,
E-cadherin↑,
ER Stress↑, induction of ER stress
p‑STAT3↓, HNK inhibited STAT3 phosphorylation
EGFR↓, inhibiting EGFR phosphorylation and its downstream signaling pathways such as the mTOR signaling pathway
mTOR↓,
mt-ROS↑, We demonstrated that HNK treatment suppresses mitochondrial respiration and increases generation of ROS in the mitochondria, leading to the induction of apoptosis in lung cancer cells
PI3K↓, inhibition of PI3K/Akt/ mTOR, EMT, and Wnt signaling pathways.
Wnt↓,

2885- HNK,    Honokiol: a novel natural agent for cancer prevention and therapy
NF-kB↓, Honokiol targets multiple signaling pathways including nuclear factor kappa B (NF-κB), signal transducers and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (m-TOR)
STAT3↓,
EGFR↓,
mTOR↓,
BioAv↝, honokiol has revealed a desirable spectrum of bioavailability after intravenous administration in animal models, thus making it a suitable agent for clinical trials
Inflam↓, inflammation, proliferation, angiogenesis, invasion and metastasis.
TumCP↓,
angioG↓,
TumCI↓,
TumMeta↓,
cSrc↓, STAT3 inhibition by honokiol has also been correlated with the repression of upstream protein tyrosine kinases c-Src, JAK1 and JAK2
JAK1↓,
JAK2↓,
ERK↓, by inhibiting ERK and Akt pathways (31) or by upregulation of PTEN
Akt↓,
PTEN↑,
ChemoSen↑, Chemopreventive/ chemotherapeutic effects of honokiol in various malignancies: preclinical studies
chemoP↑,
COX2↓, honokiol was found to inhibit UVB-induced expression of cyclooxygenase-2, prostaglandin E2, proliferating cell nuclear antigen and pro-inflammatory cytokines, such as TNF-α, interleukin (IL)-1β and IL-6 in the skin
PGE2↓,
TNF-α↓,
IL1β↓,
IL6↓,
Casp3↑, release of caspases-3, -8 and -9as well as poly (ADP-ribose) polymerase (PARP) cleavage and p53 activation upon honokiol treatment that led to DNA fragmentation
Casp8↑,
Casp9↑,
cl‑PARP↑,
DNAdam↑,
Cyt‑c↑, translocation of cytochrome c to cytosol in human melanoma cell lines
RadioS↑, liposomal honokiol for 24 h showed a higher radiation enhancement ratio (~ two-fold) as compared to the radiation alone,
RAS↓, Honokiol also caused suppression of Ras activation
BBB↑, honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth
BioAv↓, Due to the concerns about poor aqueous solubility, liposomal formulations of honokiol have been developed and tested for their pharmacokinetics
Half-Life↝, In another comparative study, plasma honokiol concentrations was maintained above 30 and 10 μg/mL for 24 and 48 hours, respectively, in liposomal honokiol-treated mice, whereas it fell quickly (less than 5 μg/mL) by 12 hours in free honokiol-treated
Half-Life↝, free honokiol has poor GIT absorption, bio-transformed in liver to mono-glucuronide honokiol and sulphated mono-hydroxyhonokiol, ~ 50% is secreted in bile, ~ 60-65% plasma protein bound with elimination half life of (t1/2) of 49.05 – 56.24 minutes.
toxicity↓, These studies suggest that honokiol either alone or as a part of magnolia bark extract does not induce toxicity in animal models and thus could be clinically safe

2867- HNK,    Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway
- in-vitro, Nor, C2C12
*antiOx↑, known to have antioxidant activity, but its mechanism of action remains unclear.
*ROS↓, honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation.
*Bcl-2↑, up-regulation of Bcl-2 and down-regulation of Bax,
*BAX↓,
Casp9∅, in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose)
Casp3∅,
cl‑PARP∅,
Cyt‑c?, e blocking of cytochrome c release to the cytoplasm

2872- HNK,    Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis
- in-vivo, ALS, NA - NA, Stroke, NA - NA, AD, NA - NA, Park, NA
*eff↑, Honokiol (HNK) has been reported to exert therapeutic effects in several neurologic disease models including ischemia stroke, Alzheimer's disease and Parkinson's disease
*ROS↓, honokiol alleviated cellular oxidative stress by enhancing glutathione (GSH) synthesis and activating the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response element (ARE) pathway.
*GSH↑,
*NRF2↑,
*motorD↑, Importantly, honokiol extended the lifespan of the SOD1-G93A transgenic mice and improved the motor function
*OS↑,
*neuroP↑, honokiol exerted neuroprotection in ALS models.
*BBB↑, due to its strong lipophilic property, honokiol can readily permeate the blood–brain barrier and blood–cerebrospinal fluid barrier.
*cognitive↑, honokiol was shown a beneficial effect on the cognitive impairment in APP/PS1 via ameliorating the mitochondrial dysfunction
*eff↑, Furthermore, honokiol was applied for patent (200310121303.0) for ischemic stroke treatment, and the clinical trials would be started soon in China
*antiOx↑, Honokiol showed strong antioxidant capacity in vitro and protected the yeast against H2O2 induced oxidative damage
*Cyt‑c↑, cytoplasmic release of cytochrome c was markedly decreased
*PGC-1α↑, 10 μmol/L and significantly upregulated the PGC-1α, NRF1, and TFAM protein


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   AMP↑,1,   AMPK↑,1,   angioG↓,1,   Apoptosis↑,2,   ATP↓,1,   BBB↓,1,   BBB↑,1,   BioAv↓,1,   BioAv↝,1,   Ca+2↑,1,   Casp3↑,3,   Casp3∅,1,   Casp7↑,1,   Casp8↑,1,   Casp9↑,1,   Casp9∅,1,   chemoP↑,2,   ChemoSen↑,2,   COX2↓,2,   cSrc↓,1,   Cyt‑c↑,3,   Cyt‑c?,1,   DNAdam↑,1,   E-cadherin↑,1,   EGFR↓,2,   EMT↓,1,   ER Stress↑,1,   ERK↓,1,   Half-Life↝,2,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   JAK1↓,1,   JAK2↓,1,   mitResp↓,2,   mTOR↓,2,   N-cadherin↓,1,   NF-kB↓,2,   NO↝,1,   OCR↓,2,   cl‑PARP↑,1,   cl‑PARP∅,1,   PGE2↓,2,   PI3K↓,1,   PTEN↑,1,   RadioS↑,2,   RAS↓,2,   mt-ROS↑,2,   selectivity↑,1,   Snail↓,1,   STAT3↓,1,   p‑STAT3↓,1,   TNF-α↓,2,   toxicity↓,1,   TumCCA↑,1,   TumCI↓,1,   TumCP↓,2,   tumCV↓,1,   TumMeta↓,1,   VEGF↓,1,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 63

Results for Effect on Normal Cells:
antiOx↑,2,   BAX↓,1,   BBB↑,1,   Bcl-2↑,1,   cognitive↑,1,   Cyt‑c↑,1,   eff↑,2,   GSH↑,1,   motorD↑,1,   neuroP↑,1,   NRF2↑,1,   OS↑,1,   PGC-1α↑,1,   ROS↓,2,  
Total Targets: 14

Scientific Paper Hit Count for: Cyt‑c, cyt-c Release into Cytosol
5 Honokiol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:94  Target#:77  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page