condition found tbRes List
HNK, Honokiol: Click to Expand ⟱
Features:
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.
-considered to have antioxidant properties
-low oral bioavailability and difficulty in intravenous administration
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.

Pathways:
-Inhibit NF-κB activation
-Downregulate STAT3 signalin
-Inhibiting the PI3K/Akt pathway,
-Inhibition of mTOR
-Influences various MAPK cascades—including ERK, JNK, and p38
-Inhibition of EGFR
-Inhibiting Notch pathway (CSCs)
-GPx4 inhibit
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways
-Disrupt the mitochondrial membrane potential in cancer cells.
-Reported to increase ROS production in cancer cells
-Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.
- is well-known in the research community for its role in activating SIRT3

-Note half-life 40–60 minutes
BioAv
Pathways:
- induce ROS production in cancer cells, and typically lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ Prx
- Raises AntiOxidant defense in Normal Cells: ROS↓">ROS, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ROS, Reactive Oxygen Species: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer.
ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations.
However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS.

"Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways."
"During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity."
"ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−".
"Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules."

Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea.
Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells."

Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers.
-It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis.

Note: Products that may raise ROS can be found using this database, by:
Filtering on the target of ROS, and selecting the Effect Direction of ↑

Targets to raise ROS (to kill cancer cells):
• NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS.
    -Targeting NOX enzymes can increase ROS levels and induce cancer cell death.
    -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS
• Mitochondrial complex I: Inhibiting can increase ROS production
• P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes)
• Nrf2: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels
• Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels
• Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels
• SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels
• PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels
• HIF-1α: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS
• Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production.
-Inhibiting fatty acid oxidation can increase ROS levels
• ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels
• Autophagy: process by which cells recycle damaged organelles and proteins.
-Inhibiting autophagy can increase ROS levels and induce cancer cell death.
• KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes.
    -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death.
• DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels
• PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels
• SIRT1:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels
• AMPK: regulates energy metabolism and can increase ROS levels when activated.
• mTOR: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels
• HSP90: regulates protein folding and can increase ROS levels when inhibited.
• Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels
• Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS.
    -Increasing lipid peroxidation can increase ROS levels
• Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation.
    -Increasing ferroptosis can increase ROS levels
• Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability.
    -Opening the mPTP can increase ROS levels
• BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited.
• Caspase-independent cell death: a form of cell death that is regulated by ROS.
    -Increasing caspase-independent cell death can increase ROS levels
• DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS
• Epigenetic regulation: process by which gene expression is regulated.
    -Increasing epigenetic regulation can increase ROS levels

-PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS)

ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx)
-HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more
-Atorvastatin typically 40-80mg/day
-Dipyridamole typically 200mg 2x/day
-Lycopene typically 100mg/day range

Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy

Scientific Papers found: Click to Expand⟱
2889- HNK,  doxoR,    Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice
- in-vivo, Nor, NA
*SIRT3↑, We have recently identified honokiol (HKL) as an activator of SIRT3
chemoP↑, HKL-mediated activation of SIRT3 also protects the heart from doxorubicin-induced cardiac damage without compromising the tumor killing potential of doxorubicin.
*cardioP↑, mice that received doxorubicin plus HKL showed preserved cardiac function, compared to doxorubicin and vehicle treated mice
mtDam↑, HKL-mediated activation of SIRT3 prevented Doxorubicin induced ROS production, mitochondrial damage and cell death in rat neonatal cardiomyocytes
ROS↑,
*ROS↓, We found that cells treated with HKL suppressed doxorubicin-induced ROS levels
*MMP↑, HKL preserves mitochondrial membrane potential.

2879- HNK,    Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function
- in-vitro, Lung, H226 - in-vivo, NA, NA
tumCV↓, honokiol significantly reduced the percentage of bronchial that exhibit abnormal lung SCC histology from 24.4% bronchial in control to 11.0% bronchial in honokiol treated group (p= 0.01) while protecting normal bronchial histology (present in 20.5%
selectivity↑,
TumCP↓, In vitro studies revealed that honokiol inhibited lung SCC cells proliferation, arrested cells at the G1/S cell cycle checkpoint, while also leading to increased apoptosis.
TumCCA↑,
Apoptosis↑,
mt-ROS↑, interfering with mitochondrial respiration is a novel mechanism by which honokiol increased generation of reactive oxygen species (ROS) in the mitochondria, : mitochondrial ROS generation
Casp3↑, cells treated with honokiol showed a significant increase in caspase 3/7 activity, which occurred in dose- and time-dependent manners
Casp7↑,
OCR↓, Honokiol caused a fast and concentration-dependent decrease in basal oxygen consumption rate (OCR) in both cell lines
Cyt‑c↑, cytochrome c release was increased in honokil treated mouse lung SCC tissue
ATP↓, found a dramatic decrease in cellular ATP content
mitResp↓, Honokiol inhibits mitochondrial respiration and decreases ATP levels in H226 and H520 cells, which may elevate AMP and the intracellular AMP/ATP ratio, leading to activation of the AMPK
AMP↑,
AMPK↑,

2883- HNK,    Honokiol targets mitochondria to halt cancer progression and metastasis
- Review, Var, NA
ChemoSen↑, Combination of HNK with many traditional chemotherapeutic drugs as well as radiation sensitizes cancer cells to apoptotic death
BBB↓, HNK is also capable of crossing the BBB
Ca+2↑, HNK promotes human glioblastoma cancer cell apoptosis via regulation of Ca(2+) channels
Cyt‑c↑, release of mitochondrial cytochrome c and activation of caspase-3
Casp3↑,
chemoP↑, potent chemopreventive agent against lung SCC development in a carcinogen-induced lung SCC murine model
OCR↓, HNK treatment results in a decreased oxygen consumption rate (OCR) in whole intact cells, rapidly, and persistently inhibiting mitochondrial respiration, which leads to the induction of apoptosis
mitResp↓,
Apoptosis↑,
RadioS↑, Honokiol as a chemo- and radiosensitizer
NF-kB↓, HNK as an anticancer drug is its potential to inhibit multiple important survival pathways, such as NF-B and Akt
Akt↓,
TNF-α↓, by inhibiting TNF-induced nerve growth factor IB expression in breast cancer cells
PGE2↓, reduced prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) secretion levels
VEGF↓,
NO↝, HNK inhibits cancer cell migration by targeting nitric oxide and cyclooxygenase-2 or Ras GTPase-activating-like protein (IQGAP1) [
COX2↓,
RAS↓,
EMT↓, HNK can reverse the epithelial-mesenchymal-transition (EMT) process, which is a key step during embryogenesis, cancer invasion, and metastasis,
Snail↓, HNK reduced the expression levels of Snail, N-cadherin and -catenin, which are mesenchymal markers, but increased E-cadherin,
N-cadherin↓,
β-catenin/ZEB1↓,
E-cadherin↑,
ER Stress↑, induction of ER stress
p‑STAT3↓, HNK inhibited STAT3 phosphorylation
EGFR↓, inhibiting EGFR phosphorylation and its downstream signaling pathways such as the mTOR signaling pathway
mTOR↓,
mt-ROS↑, We demonstrated that HNK treatment suppresses mitochondrial respiration and increases generation of ROS in the mitochondria, leading to the induction of apoptosis in lung cancer cells
PI3K↓, inhibition of PI3K/Akt/ mTOR, EMT, and Wnt signaling pathways.
Wnt↓,

2887- HNK,    Honokiol Restores Microglial Phagocytosis by Reversing Metabolic Reprogramming
- in-vitro, AD, BV2
*Glycolysis↑, switch from oxidative phosphorylation to anaerobic glycolysis and enhancing ATP production.
*ATP↑,
*ROS↓, honokiol reduced mitochondrial reactive oxygen species production and elevated mitochondrial membrane potential.
*MMP↑,
*OXPHOS↑, Honokiol enhanced ATP production by promoting mitochondrial OXPHOS in BV2 cell
*PPARα↑, Therefore, we argue that honokiol increases the expression of PPAR and PGC1, thus regulating a metabolic switch from glycolysis to OXPHOS
*PGC-1α↑,

2891- HNK,    Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs
- Review, Var, NA
AntiCan↑, honokiol possesses anti-carcinogenic, anti-inflammatory, anti-oxidative, anti-angiogenic as well as inhibitory effect on malignant transformation of papillomas to carcinomas in vitro and in vivo animal models without any appreciable toxicity.
Inflam↓,
antiOx↑,
selectivity↑,
*toxicity↓,
cycD1↓, honokiol resulted in inhibition of UVB-induced expression levels of cyclins (cyclins D1, D2, and E) and CDKs in skin tumors
cycE↓,
CDK2↓,
CDK4↓,
TumMeta↓, Honokiol Inhibits Metastatic Potential of Melanoma Cells
NADPH↓, Honokiol not only reduces the NADPH oxidase activity
MMP2↓, honokiol treatment reduces the expression of MMP-2 and MMP-9
MMP9↓,
p‑mTOR↓, honokiol caused significant downregulation of mTOR phosphorylation
EGFR↓, honokiol decreases the expression levels of total EGFR
EMT↓, honokiol effectively inhibits EMT in breast cancer cells
SIRT1↑, onokiol increases the expressions of SIRT1 and SIRT3,
SIRT3↑,
EZH2↓, depletion of EZH2 by honokiol treatment inhibited cell proliferation
Snail↓, significantly down regulates Snail, vimentin, N-cadherin expression, and upregulates cytokeratin-18 and E-cadherin expression
Vim↓,
N-cadherin↓,
E-cadherin↑,
COX2↓, honokiol as an inhibitor of COX-2 expression
NF-kB↓, inhibited transcriptional activity of NF-jB,
*ROS↓, Inhibition of UVR-induced inflammatory mediators as well as ROS by honokiol treatment contributes to the prevention of UVR-induced skin tumor development
Ca+2↑, excessive influx of cytosolic calcium ion into the mitochondria triggers dysfunction of the mitochon- drial membrane permeabilization with mitochondrial ROS induction
ROS↑,

2893- HNK,  doxoR,    Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts
- in-vivo, Nor, NA
*mitResp↑, Oxygen consumption in freshly isolated mitochondria from mice treated with Honokiol showed enhanced mitochondrial respiration.
*PPARγ↑, Honokiol modestly increased PPARγ transcriptional activities in cultured embryonic rat
*cardioP↑, Honokiol alleviated Dox-cardiotoxicity with improved cardiac function and reduced cardiomyocyte apoptosis
*SIRT3↑, recent study reported that Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial SIRT3
*ROS↓, Honokiol treatment depressed total ROS levels, which illustrated by the less pronounced decreased ratio of GSH/GSSG in mice
*GSH↑,
*SOD2↑, Both SOD2 and CD36 were upregulated in the heart of Honokiol treated mice

2894- HNK,    Pharmacological features, health benefits and clinical implications of honokiol
- Review, Var, NA - Review, AD, NA
*BioAv↓, HNK showed poor aqueous solubility due to phenolic hydroxyl groups forming intramolecular hydrogen bonds and poor solubility in water (
*neuroP↑, HNK has the accessibility to reach the neuronal tissue by crossing the BBB and showing neuroprotective effects
*BBB↑,
*ROS↓, fig 2
*Keap1↑,
*NRF2↑,
*Casp3↓,
*SIRT3↑,
*Rho↓,
*ERK↓,
*NF-kB↓,
angioG↓,
RAS↓,
PI3K↓,
Akt↓,
mTOR↓,
*memory↑, oral administration of HNK (1 mg/kg) in senescence-accelerated mice prevents age-related memory and learning deficits
*Aβ↓, in Alzheimer’s disease, HNK significantly reduces neurotoxicity of aggregated Ab
*PPARγ↑, Furthermore, the expression of PPARc and PGC1a was increased by HNK, suggesting its beneficial impact on energy metabolism
*PGC-1α↑,
NF-kB↓, activation of NFjB was suppressed by HNK via suppression of nuclear translocation and phosphorylation of the p65 subunit and further instigated apoptosis by enhancing TNF-a
Hif1a↓, HNK has anti-oxidative properties and can downregulate the HIF-1a protein, inhibiting hypoxia- related signaling pathways
VEGF↓, renal cancer, via decreasing the vascular endothelial growth factor (VEGF) and heme-oxygenase-1 (HO-1)
HO-1↓,
Foxm1↓, HNK interaction with the FOXM1 oncogenic transcription factor inhibits cancer cells
p27↑, HNK treatment upregulates the expression of CDK inhibitor p27 and p21, whereas it downregulates the expression of CDK2/4/6 and cyclin D1/2
P21↑,
CDK2↓,
CDK4↓,
CDK6↓,
cycD1↓,
Twist↓, HNK averted the invasion of urinary bladder cancer cells by downregulating the steroid receptor coactivator, Twist1 and Matrix metalloproteinase-2
MMP2↓,
Rho↑, By activating the RhoA, ROCK and MLC signaling, HNK inhibits the migration of highly metastatic renal cell carcinoma
ROCK1↑,
TumCMig↓,
cFLIP↓, HNK can be used to suppress c-FLIP, the apoptosis inhibitor.
BMPs↑, HNK treatment increases the expression of BMP7 protein
OCR↑, HNK might increase the oxygen consumption rate while decreasing the extracellular acidification rate in breast cancer cells.
ECAR↓,
*AntiAg↑, It also suppresses the platelet aggregation
*cardioP↑, HNK is an attractive cardioprotective agent because of its strong antioxidative properties
*antiOx↑,
*ROS↓, HNK treatment reduced cellular ROS production and decreased mitochondrial damage in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation
P-gp↓, The expres- sion of P-gp at mRNA and protein levels is reduced in HNK treatment on human MDR and MCF-7/ADR breast cancer cell lines

2895- HNK,    Mitochondria-Targeted Honokiol Confers a Striking Inhibitory Effect on Lung Cancer via Inhibiting Complex I Activity
- in-vitro, Lung, PC9
eff↑, Mito-HNK is >100-fold more potent than HNK in inhibiting cell proliferation
TumCP↓,
mt-ROS↑, inhibiting mitochondrial complex ǀ, stimulating reactive oxygen species generation, oxidizing mitochondrial peroxiredoxin-3, and suppressing the phosphorylation of mitoSTAT3
Prx3↑,
mt-STAT3↓,
*toxicity∅, Mito-HNK showed no toxicity and targets the metabolic vulnerabilities of primary and metastatic lung cancers.
selectivity↑,
ChemoSen↑, combination with standard chemotherapeutics.

2899- HNK,    SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampus
- in-vivo, Nor, NA
*memory↑, Honokiol attenuated surgery-induced memory loss and neuronal apoptosis, decreased neuroinflammatory response, and ameliorated oxidative damage in hippocampus.
*Inflam↓,
*ROS↓,
neuroP↑,
SIRT3↑, HNK increased SIRT3 expression and thus decreased the acetylation of superoxide dismutase 2 (SOD2).
ac‑SOD2↓,

2901- HNK,  doxoR,    Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts
- in-vivo, Nor, NA
*mitResp↑, mice treated with Honokiol showed enhanced mitochondrial respiration
*PPARγ↑, Honokiol modestly increased PPARγ transcriptional activities in cultured embryonic rat cardiomyocytes
*Inflam↓, Honokiol repressed cardiac inflammatory responses and oxidative stress in mice subjected to Dox treatment.
*ROS↓,
*cardioP↑, We conclude that Honokiol protects the heart from Dox-cardiotoxicity
*SOD2↑, Both SOD2 and CD36 were upregulated in the heart of Honokiol treated mice
*LDH↓, Furthermore, Honokiol treatment reduced the Dox-induced elevation of lactate dehydrogenase (LDH) activity (Fig. 6D) in mice subjected to acute Dox treatment.

2902- HNK,  Rad,    Honokiol Mitigates Ionizing Radiation-Induced Injury by Maintaining the Redox Balance of the TrxR/Trx System
- in-vitro, Nor, BEAS-2B
*TrxR1↑, HKL pre-exposure significantly increased the expressions of TrxR1 and Trx proteins in general, in particular at doses ranging between 0.05 and 5 µM HKL
*Trx↑,
*radioP↑, Overall, the findings presented here demonstrate that HKL has the potential to be a novel radioprotector capable of cellular protection against radiation-induced injuries
*ROS↓, Compared to the IR group, there was a significant decrease in the ROS levels of the HKL+IR treated group

2081- HNK,    Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, SW48 - in-vitro, Colon, HT-29 - in-vitro, Colon, LS174T - in-vitro, Colon, HCT8 - in-vitro, Colon, SW480 - in-vivo, NA, NA
tumCV↓, HNK reduced the viability of CC cell lines by increasing ROS and Fe2+ levels
ROS↑, observations suggest that ROS production is a determining factor of HNK cytotoxicity. exact mechanism underlying the pro-oxidant activity of HNK is unclear in CC
Iron↑,
GPx4↓, HNK decreased the activity of Glutathione Peroxidase 4 (GPX4)
mtDam↑, intracellular mitochondria decreased, the membrane density increased, the mitochondrial ridge shrank or disappeared, and the bilayer membrane density increased.
Ferroptosis↑, results suggested that GPX4 may be the key molecule that regulates HNK-induced ferroptosis in CC cells
TumVol↓, tumor volumes and weights were significantly lower in the Lv-NC group than in the Lv-GPX4 group
TumW↓,

1004- HNK,  RAPA,    Honokiol downregulates PD-L1 expression and enhances antitumor effects of mTOR inhibitors in renal cancer cells
- in-vitro, RCC, NA
Apoptosis↑, HNK is more potent than RAPA, both HNK and RAPA inhibited the proliferation of renal cancer cells and promoted apoptosis
TumCCA↑, G1 phase cell cycle arrest
ROS↑, HNK and RAPA significantly increased ROS generation in these cells and it was much higher in the HNK and RAPA combinatorial treatment.
PD-L1↓, HNK, but not RAPA, significantly decreased the expression of PD-L1
IFN-γ↓, HNK can also downmodulate IFN-γ-induced PD-L1expression

2071- HNK,    Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient
- Review, Nor, HaCaT
*ROS↓, Magnolia officinalis (M. officinalis) extract significantly lowered the levels of ROS in senescent fibroblasts.
*antiOx↑, honokiol was demonstrated as a core ingredient of M. officinalis extract that exhibits antioxidant effects.
*AntiAge↑, new approaches to anti–aging treatments
*MMP↑, increases MMP
*ECAR↓, senescent fibroblasts treated with M. officinalis extract had lower ECAR values than those treated with DMSO, suggesting that M. officinalis treatment lowed glycolysis rate
*Glycolysis↓, honokiol, similar to M. officinalis, reduced the dependence of glycolysis as an energy source, indicating restoration of mitochondrial function by honokiol.
*PAR-2↓, downregulation of PAR–2 expression by M. officinalis may reduce skin pigmentation.
*CXCL12↑, upregulation of SDF–1 expression by M. officinalis may reduce skin pigmentation.
*BMAL1↑, activation of Bmal–1 expression by M. officinalis promote skin turnover.
*mt-ROS↓, compared to M. officinalis extract, honokiol at 1 and 10 μM was more effective in lowering mitochondrial ROS levels
*OXPHOS↓, Inhibition of oxidative phosphorylation and induction of a compensatory shift toward glycolysis resulted in lower compensatory glycolysis in honokiol–treated senescent fibroblasts

2072- HNK,    Honokiol Suppresses Cell Proliferation and Tumor Migration through ROS in Human Anaplastic Thyroid Cancer Cells
- in-vitro, Thyroid, NA
ROS↑, honokiol induced ROS activation
eff↓, and could be suppressed by pre-treated with an antioxidant agent, N-acetyl-l-cysteine (NAC).

2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, honokiol caused dose-dependent and time-dependent cell death in human osteosarcoma cells
TumAuto↑, death induced by honokiol were primarily autophagy and apoptosis.
Apoptosis↑,
TumCCA↑, honokiol induced G0/G1 phase arrest,
GRP78/BiP↑, elevated the levels of glucose-regulated protein (GRP)−78, an endoplasmic reticular stress (ERS)-associated protein
ROS↑, increased the production of intracellular reactive oxygen species (ROS)
eff↓, In contrast, reducing production of intracellular ROS using N-acetylcysteine, a scavenger of ROS, concurrently suppressed honokiol-induced cellular apoptosis, autophagy, and cell cycle arrest.
p‑ERK↑, honokiol stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2.
selectivity↑, human fibroblasts showed strong resistance to HNK, the IC50 values for which were 118.9 and 71.5 μM
Ca+2↑, HNK increased intracellular Ca2+ in both HOS and U2OS cells
MMP↓, mitochondrial membrane potential (MMP) sharply decreased following HNK treatment
Casp3↑, HNK markedly activated caspase-3, caspase-9
Casp9↑,
cl‑PARP↑, led to PARP cleavage
Bcl-2↓, expression of Bcl-2, Bcl-xl, and survivin was found to be decreased
Bcl-xL↓,
survivin↓,
LC3B-II↑, HNK increased the level of LC3B-II and Atg5 in HOS and U2OS cells.
ATG5↑,
TumVol↓, HNK at doses of 40 mg/kg resulted in significant decrease in tumor volume and weight, after 7 days of drug administration
TumW↓,
ER Stress↑, ER stress can trigger ROS production through release of calcium

2079- HNK,    Honokiol Microemulsion Causes Stage-Dependent Toxicity Via Dual Roles in Oxidation-Reduction and Apoptosis through FoxO Signaling Pathway
- in-vitro, Nor, PC12
*toxicity↝, Our previous studies have already demonstrated that a high dose of the honokiol microemulsion (0.6 μg/mL) induces developmental toxicity in rats and zebrafish by inducing oxidative stress.
*ROS↓, In zebrafish, low doses of honokiol microemulsion (0.15, 0.21 μg/mL) significantly decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the mRNA expression of bcl-2.
*ROS↑, In contrast, high dose (0.6 μg/mL) increased the levels of ROS and MDA, decreased activities and mRNA expression of superoxide dismutase (SOD) and catalase (CAT), and increased mRNA expression of bax, c-jnk, p53 and bim.
*Dose⇅, In rat pheochromocytoma cells (PC12 cells), low doses of the honokiol microemulsion (1, 5, 10 µM) exerted a protective effect against H2O2-induced oxidative damage while high doses (≥20 µM) induced oxidative stress, which further confirms the dual ef
*BioAv↑, highly lipophilic property of honokiol allows it to readily cross the blood-brain barrier and blood-cerebrospinal fluid barrier with high bioavailability.
*BioAv↓, However, this property also limits its clinical usage due to low oral bioavailability and difficulty in intravenous administration.
*ROS⇅, levels of ROS and MDA were significantly decreased at a concentration of 0.21 μg/mL and increased at a concentration of 0.6 μg/mL in both 24 and 96 hpf embryos
*SOD↓, The activity of SOD showed only a slight reduction at 20 µM but was significantly reduced at 40 and 80 μM
*toxicity↑, According to the human rat equivalent dosage conversion, the potential toxic dose in humans may be 320 µg/kg/d

2863- HNK,    Honokiol induces paraptosis-like cell death through mitochondrial ROS-dependent endoplasmic reticulum stress in hepatocellular carcinoma Hep3B cells
- in-vitro, Liver, Hep3B
ER Stress↑, Honokiol also enhanced ER stress, increased cellular calcium ion (Ca2+) levels, and caused mitochondrial dysfunction
Ca+2↑,
mtDam↑,
PTEN↑, Honokiol upregulated the expression of mitophagy regulators such as PTEN-induced kinase 1 and Parkin in the mitochondria
PARK2↑,
Alix/AIP‑1↓, whereas the expression of apoptosis-linked gene 2-interacting protein X (Alix), involved in suppressing paraptosis, was downregulated.
ROS↑, honokiol-induced cytotoxicity was accompanied by excessive generation of intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS).
mt-ROS↑,

2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, induction of G0/G1 and G2/M cell cycle arrest
CDK2↓, (via the regulation of cyclin-dependent kinase (CDK) and cyclin proteins),
EMT↓, epithelial–mesenchymal transition inhibition via the downregulation of mesenchymal markers
MMPs↓, honokiol possesses the capability to supress cell migration and invasion via the downregulation of several matrix-metalloproteinases
AMPK↑, (activation of 5′ AMP-activated protein kinase (AMPK) and KISS1/KISS1R signalling)
TumCI↓, inhibiting cell migration, invasion, and metastasis, as well as inducing anti-angiogenesis activity (via the down-regulation of vascular endothelial growth factor (VEGFR) and vascular endothelial growth factor (VEGF)
TumCMig↓,
TumMeta↓,
VEGFR2↓,
*antiOx↑, diverse biological activities, including anti-arrhythmic, anti-inflammatory, anti-oxidative, anti-depressant, anti-thrombocytic, and anxiolytic activities
*Inflam↓,
*BBB↑, Due to its ability to cross the blood–brain barrier
*neuroP↑, beneficial towards neuronal protection through various mechanism, such as the preservation of Na+/K+ ATPase, phosphorylation of pro-survival factors, preservation of mitochondria, prevention of glucose, reactive oxgen species (ROS), and inflammatory
*ROS↓,
Dose↝, Generally, the concentrations used for the in vitro studies are between 0–150 μM
selectivity↑, Interestingly, honokiol has been shown to exhibit minimal cytotoxicity against on normal cell lines, including human fibroblast FB-1, FB-2, Hs68, and NIH-3T3 cells
Casp3↑, ↑ Caspase-3 & caspase-9
Casp9↑,
NOTCH1↓, Inhibition of Notch signalling: ↓ Notch1 & Jagged-1;
cycD1↓, ↓ cyclin D1 & c-Myc;
cMyc↓,
P21?, ↑ p21WAF1 protein
DR5↑, ↑ DR5 & cleaved PARP
cl‑PARP↑,
P53↑, ↑ phosphorylated p53 & p53
Mcl-1↑, ↓ Mcl-1 protein
p65↓, ↓ p65; ↓ NF-κB
NF-kB↓,
ROS↑, ↑ JNK activation ,Increase ROS activity:
JNK↑,
NRF2↑, ↑ Nrf2 & c-Jun protein activation
cJun↑,
EF-1α↓, ↓ EFGR; ↓ MAPK/PI3K pathway activity
MAPK↓,
PI3K↓,
mTORC1↓, ↓ mTORC1 function; ↑ LKB1 & cytosolic localisation
CSCs↓, Inhibit stem-like characteristics: ↓ Oct4, Nanog & Sox4 protein; ↓ STAT3;
OCT4↓,
Nanog↓,
SOX4↓,
STAT3↓,
CDK4↓, ↓ Cdk2, Cdk4 & p-pRbSer780;
p‑RB1↓,
PGE2↓, ↓ PGE2 production ↓ COX-2 ↑ β-catenin
COX2↓,
β-catenin/ZEB1↑,
IKKα↓, ↓ IKKα
HDAC↓, ↓ class I HDAC proteins; ↓ HDAC activity;
HATs↑, ↑ histone acetyltransferase (HAT) activity; ↑ histone H3 & H4
H3↑,
H4↑,
LC3II↑, ↑ LC3-II
c-Raf↓, ↓ c-RAF
SIRT3↑, ↑ Sirt3 mRNA & protein; ↓ Hif-1α protein
Hif1a↓,
ER Stress↑, ↑ ER stress signalling pathway activation; ↑ GRP78,
GRP78/BiP↑,
cl‑CHOP↑, ↑ cleaved caspase-9 & CHOP;
MMP↓, mitochondrial depolarization
PCNA↓, ↓ cyclin B1, cyclin D1, cyclin D2 & PCNA;
Zeb1↓, ↓ ZEB2 Inhibit
NOTCH3↓, ↓ Notch3/Hes1 pathway
CD133↓, ↓ CD133 & Nestin protein
Nestin↓,
ATG5↑, ↑ Atg7 protein activation; ↑ Atg5;
ATG7↑,
survivin↓, ↓ Mcl-1 & survivin protein
ChemoSen↑, honokiol potentiated the apoptotic effect of both doxorubicin and paclitaxel against human liver cancer HepG2 cells.
SOX2↓, Honokiol was shown to downregulate the expression of Oct4, Nanog, and Sox2 which were known to be expressed in osteosarcoma, breast carcinoma and germ cell tumours
OS↑, Lipo-HNK was also shown to prolong survival and induce intra-tumoral apoptosis in vivo.
P-gp↓, Honokiol was shown to downregulate the expression of P-gp at mRNA and protein levels in MCF-7/ADR, a human breast MDR cancer cell line
Half-Life↓, For i.v. administration, it has been found that there was a rapid rate of distribution followed by a slower rate of elimination (elimination half-life t1/2 = 49.22 min and 56.2 min for 5 mg or 10 mg of honokiol, respectively
Half-Life↝, male and female dogs was assessed. The elimination half-life (t1/2 in hours) was found to be 20.13 (female), 9.27 (female), 7.06 (male), 4.70 (male), and 1.89 (male) after administration of doses of 8.8, 19.8, 3.9, 44.4, and 66.7 mg/kg, respectively.
eff↑, Apart from that, epigallocatechin-3-gallate functionalized chitin loaded with honokiol nanoparticles (CE-HK NP), developed by Tang et al. [224], inhibit HepG2
BioAv↓, extensive biotransformation of honokiol may contribute to its low bioavailability.

2865- HNK,    Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma
- in-vitro, MB, DAOY - vitro+vivo, NA, NA
BioAv↓, poor water solubility of HNK results in its low bioavailability, thus limiting its wide use in clinical cancer treatments
BioAv↓, Liposomes can overcome this limitation, and liposomal HNK (Lip-HNK) has promising clinical applications in this aspect
TumCP↓, increased Lip-HNK concentration could inhibit the proliferation of DAOY and D283 cells, without exerting effects on the growth of non-tumor cells
selectivity↑,
P53↑, P53 and P21 proteins (inhibiting cell cycle progression) was increased
P21↑,
CDK4↓, Lip-HNK also downregulated the expression of CDK4 and cyclin D1
cycD1↓,
mtDam↑, Lip-HNK caused apoptosis and death, which, in turn, led to the failure of mitochondrial membrane function
ROS↑, Lip-HNK induced ROS production, which, as hypothesized, was blocked by the ROS scavenger NAC
eff↓, Lip-HNK induced ROS production, which, as hypothesized, was blocked by the ROS scavenger NAC
Casp3↑, caspase-3 sectioned and the Bax protein level increased by Lip-HNK
BAX↑,
LC3II↑, LC3BII protein in the Lip-HNK-treated group was noticeably elevated
Beclin-1↑, Beclin-1 (BECN), Atg7 proteins, and LC3BII were dramatically upregulated in the Lip-HNK-treated cells
ATG7↑,
p62↑, Lip-HNK treatment remarkably increased p62 expression, which was dose-dependent
eff↑, Lip-HNK treatment (20 mg/kg) drastically inhibited tumor growth. The combined treatment of Lip-HNK, Chloroquine , and Carboplatin showed more superior antitumor effects
ChemoSen↑, Lip-HNK alone or combined with chemotherapy (Carboplatin or Etoposide) causes significant regression of orthotopic xenografts
*toxicity↓, We also found that Lip-HNK did not damage the liver and kidney

2867- HNK,    Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway
- in-vitro, Nor, C2C12
*antiOx↑, known to have antioxidant activity, but its mechanism of action remains unclear.
*ROS↓, honokiol inhibited hydrogen peroxide (H2O2)-induced DNA damage and mitochondrial dysfunction, while reducing reactive oxygen species (ROS) formation.
*Bcl-2↑, up-regulation of Bcl-2 and down-regulation of Bax,
*BAX↓,
Casp9∅, in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose)
Casp3∅,
cl‑PARP∅,
Cyt‑c?, e blocking of cytochrome c release to the cytoplasm

2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6),
*ROS↓,
*TNF-α↓,
*IL10↓,
*IL6↓,
eIF2α↑, Bcl-2, phosphorylated eIF2α, CHOP,GRP78, Bax, cleaved caspase-9 and phosphorylated PERK
CHOP↑,
GRP78/BiP↑,
BAX↑,
cl‑Casp9↑,
p‑PERK↑,
ER Stress↑, endoplasmic reticulum stress and proteins in apoptosis in 95-D and A549 cells
Apoptosis↑,
MMPs↓, decrease in levels of matrix metal-mloproteinases, P-glycoprotein expression, the formation of mammosphere, H3K27 methyltransferase, c-FLIP, level of CXCR4 receptor,pluripotency-factors, Twist-1, class I histone deacetylases, steroid receptor co
cFLIP↓,
CXCR4↓,
Twist↓,
HDAC↓,
BMPs↑, enhancement in Bax protein, and (BMP7), as well as interference with an activator of transcription 3 (STAT3), (mTOR), (EGFR), (NF-kB) and Shh
p‑STAT3↓, secreased the phosphorylation of STAT3
mTOR↓,
EGFR↓,
NF-kB↓,
Shh↓,
VEGF↓, induce apoptosis, and regulate the vascular endothelial growth factor-A expression (VEGF-A)
tumCV↓, human glioma cell lines (U251 and U-87 MG) through inhibition of colony formation, glioma cell viability, cell migration, invasion, suppression of ERK and AKT signalling cascades, apoptosis induction, and reduction of Bcl-2 expression.
TumCMig↓,
TumCI↓,
ERK↓,
Akt↓,
Bcl-2↓,
Nestin↓, increased the Bax expression, lowered the CD133, EGFR, and Nesti
CD133↓,
p‑cMET↑, HKL through the downregulating the phosphorylation of c-Met phosphorylation and stimulation of Ras,
RAS↑,
chemoP↑, Cheng and coworker determined the chemopreventive role of HKL against the proliferation of renal cell carcinoma (RCC) 786‑0 cells through multiple mechanism
*NRF2↑, , HKL also effectively activate the Nrf2/ARE pathway and reverse this pancreatic dysfunction in in vivo and in vitro model
*NADPH↓, (HUVECs) such as inhibition of NADPH oxidase activity, suppression of p22 (phox) protein expression, Rac-1 phosphorylation, reactive oxygen species production, inhibition of degradation of Ikappa-B-alpha, and suppression of activity of of NF-kB
*p‑Rac1↓,
*ROS↓,
*IKKα↑,
*NF-kB↓,
*COX2↓, Furthermore, HKL treatment the inhibited cyclooxygenase (COX-2) upregulation, reduces prostaglandin E2 production, enhanced caspase-3 activity reduction
*PGE2↓,
*Casp3↓,
*hepatoP↑, compound also displayed hepatoprotective action against oxidative injury in tert-butyl hydroperoxide (t-BHP)-injured AML12 liver cells in in vitro model
*antiOx↑, compound reduces the level of acetylation on SOD2 to stimulate its antioxidative action, which results in reduced reactive oxygen species aggregation in AML12 cells
*GSH↑, HKL prevents oxidative damage induced by H2O2 via elevating antioxidant enzymes levels which includes glutathione and catalase and promotes translocation and activation transcription factor Nrf2
*Catalase↑,
*RenoP↑, imilarly, the compound protects renal reperfusion/i-schemia injury (IRI) in adult male albino Wistar rats via reducing theactivities of serum alkaline phosphatase (ALP), aspartate aminotrans- ferase (AST) and alanine aminotransferase (ALT)
*ALP↓,
*AST↓,
*ALAT↓,
*neuroP↑, Several reports and works have shown that HKL displays some neuroprotective properties
*cardioP↑, Cardioprotection
*HO-1↑, the expression level of heme oxygenase-1 (HO-1)was remarkably up-regulated and miR-218-5p was significantly down-regulated in septic mice treated with HKL
*Inflam↓, anti-inflammatory action of HKL at dose of 10 mg/kg in the muscle layer of mice

2869- HNK,    Nature's neuroprotector: Honokiol and its promise for Alzheimer's and Parkinson's
- Review, AD, NA - Review, Park, NA
*neuroP↑, neuroprotective, anti-oxidant, anti-apoptotic, neuromodulating, anti-inflammatory, and many more qualities, honokiol,
*Inflam↓,
*motorD↑, degradation of dopaminergic neurons in Parkinson's disease and improving motor function.
*Aβ↓, Alzheimer's disease, honokiol showed promise in lowering the production of amyloid-beta (Aβ) plaques, phosphorylating tau, and enhancing cognitive performance
*p‑tau↓,
*cognitive↑,
*memory↑, prevented Acetylcholinesterase activity from elevation as well as improved acetylcholine levels, and improved learning, and memory deficits via increased ERK1/2 and Akt phosphorylation
*ERK↑,
*p‑Akt↑,
*PPARγ↑, honokiol has been reported to elevate PPARγ levels in APPswe/PS1dE9 mice as PPARγ is related to ani-inflammatory
*PGC-1α↑, honokiol boosted the expression of PGC1α and PPARγ
*MMP↑, as well as reduced elevated mitochondrial membrane potential and mitochondrial ROS
*mt-ROS↓,
*SIRT3↑, Honokiol has been found as a dual SIRT-3 activator and PPAR-γ agonist that reduced oxidative stress markers within cells and changed the AMPK pathway
*IL1β↓, honokiol prevented restraint stress-induced cognitive dysfunction by reducing the hippocampus's production of IL-1β, TNF-α, glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP)
*TNF-α↓,
*GRP78/BiP↓,
*CHOP↓,
*NF-kB↓, Additionally, the neuroprotective benefits of honokiol in mice with Aβ-induced learning and memory impairment have been attributed to the inactivation of NF-κB
*GSK‐3β↓, Treatment of honokiol in PC12 cells resulted in reduced GSK-3β and induced β-catenin which effectively showed the neuroprotective and anti-oxidant effect in AD therapy
*β-catenin/ZEB1↑,
*Ca+2↓, , anti-apoptotic effect via reduced caspase 3 levels, and protected membrane injury by reduced calcium level has been investigated in PC12 cells of AD models
*AChE↓, protective effects by serving as an antioxidant, reduced AchE levels, repaired neurofibrillary tangles, reduced NF-kB which downregulates Aβ plaque
*SOD↑, fig1
*Catalase↑,
*GPx↑,

2870- HNK,    Honokiol attenuates oxidative stress and vascular calcification via the upregulation of heme oxygenase-1 in chronic kidney disease
- in-vitro, CKD, NA
*HO-1↑, Mechanistically, HKL upregulated heme oxygenase-1 (HMOX-1), thereby inhibiting oxidative stress and reducing calcification
*ROS↓, HKL ameliorates VC by upregulating HMOX-1 and decreasing oxidative stress.

2872- HNK,    Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis
- in-vivo, ALS, NA - NA, Stroke, NA - NA, AD, NA - NA, Park, NA
*eff↑, Honokiol (HNK) has been reported to exert therapeutic effects in several neurologic disease models including ischemia stroke, Alzheimer's disease and Parkinson's disease
*ROS↓, honokiol alleviated cellular oxidative stress by enhancing glutathione (GSH) synthesis and activating the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response element (ARE) pathway.
*GSH↑,
*NRF2↑,
*motorD↑, Importantly, honokiol extended the lifespan of the SOD1-G93A transgenic mice and improved the motor function
*OS↑,
*neuroP↑, honokiol exerted neuroprotection in ALS models.
*BBB↑, due to its strong lipophilic property, honokiol can readily permeate the blood–brain barrier and blood–cerebrospinal fluid barrier.
*cognitive↑, honokiol was shown a beneficial effect on the cognitive impairment in APP/PS1 via ameliorating the mitochondrial dysfunction
*eff↑, Furthermore, honokiol was applied for patent (200310121303.0) for ischemic stroke treatment, and the clinical trials would be started soon in China
*antiOx↑, Honokiol showed strong antioxidant capacity in vitro and protected the yeast against H2O2 induced oxidative damage
*Cyt‑c↑, cytoplasmic release of cytochrome c was markedly decreased
*PGC-1α↑, 10 μmol/L and significantly upregulated the PGC-1α, NRF1, and TFAM protein

2873- HNK,    Honokiol Alleviates Oxidative Stress-Induced Neurotoxicity via Activation of Nrf2
- in-vitro, Nor, PC12
*neuroP↑, multiple pharmacological functions, including neuroprotection.
*GSH↑, Hon attenuates the H2O2- or 6-hydroxydopamine (6-OHDA)-induced apoptosis of PC12 cells by increasing the glutathione level
*HO-1↑, and upregulating a multitude of cytoprotective proteins, including heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, thioredoxin 1, and thioredoxin reductase 1.
*NADPH↑,
*Trx1↑,
*TrxR1↑,
*NRF2↑, Hon promotes transcription factor Nrf2 nuclear translocation and activation.
*ROS↓, Hon is promising for further development as a therapeutic drug against oxidative stress-related neurodegenerative disorders. Inhibition of ROS accumulation
*antiOx↑, Upregulation of antioxidant species in PC12 cells
*BBB↑, Hon has the ability to cross the BBB
Dose↓, We demonstrated here that Hon, at the concentration as low as 5 μM, significantly rescues the cells from H2O2- or 6-OHDA-induced oxidative damage


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 26

Results for Effect on Cancer/Diseased Cells:
Akt↓,3,   Alix/AIP‑1↓,1,   AMP↑,1,   AMPK↑,2,   angioG↓,1,   AntiCan↑,1,   antiOx↑,1,   Apoptosis↑,5,   ATG5↑,2,   ATG7↑,2,   ATP↓,1,   BAX↑,2,   BBB↓,1,   Bcl-2↓,2,   Bcl-xL↓,1,   Beclin-1↑,1,   BioAv↓,3,   BMPs↑,2,   Ca+2↑,4,   Casp3↑,5,   Casp3∅,1,   Casp7↑,1,   Casp9↑,2,   Casp9∅,1,   cl‑Casp9↑,1,   CD133↓,2,   CDK2↓,3,   CDK4↓,4,   CDK6↓,1,   cFLIP↓,2,   chemoP↑,3,   ChemoSen↑,4,   CHOP↑,1,   cl‑CHOP↑,1,   cJun↑,1,   p‑cMET↑,1,   cMyc↓,1,   COX2↓,3,   CSCs↓,1,   CXCR4↓,1,   cycD1↓,4,   cycE↓,1,   Cyt‑c↑,2,   Cyt‑c?,1,   Dose↓,1,   Dose↝,1,   DR5↑,1,   E-cadherin↑,2,   ECAR↓,1,   EF-1α↓,1,   eff↓,3,   eff↑,3,   EGFR↓,3,   eIF2α↑,1,   EMT↓,3,   ER Stress↑,5,   ERK↓,1,   p‑ERK↑,1,   EZH2↓,1,   Ferroptosis↑,1,   Foxm1↓,1,   GPx4↓,1,   GRP78/BiP↑,3,   H3↑,1,   H4↑,1,   Half-Life↓,1,   Half-Life↝,1,   HATs↑,1,   HDAC↓,2,   Hif1a↓,2,   HO-1↓,1,   IFN-γ↓,1,   IKKα↓,1,   Inflam↓,1,   Iron↑,1,   JNK↑,1,   LC3B-II↑,1,   LC3II↑,2,   MAPK↓,1,   Mcl-1↑,1,   mitResp↓,2,   MMP↓,2,   MMP2↓,2,   MMP9↓,1,   MMPs↓,2,   mtDam↑,4,   mTOR↓,3,   p‑mTOR↓,1,   mTORC1↓,1,   N-cadherin↓,2,   NADPH↓,1,   Nanog↓,1,   Nestin↓,2,   neuroP↑,1,   NF-kB↓,5,   NO↝,1,   NOTCH1↓,1,   NOTCH3↓,1,   NRF2↑,1,   OCR↓,2,   OCR↑,1,   OCT4↓,1,   OS↑,1,   P-gp↓,2,   P21?,1,   P21↑,2,   p27↑,1,   P53↑,2,   p62↑,1,   p65↓,1,   PARK2↑,1,   cl‑PARP↑,2,   cl‑PARP∅,1,   PCNA↓,1,   PD-L1↓,1,   p‑PERK↑,1,   PGE2↓,2,   PI3K↓,3,   Prx3↑,1,   PTEN↑,1,   RadioS↑,1,   c-Raf↓,1,   RAS↓,2,   RAS↑,1,   p‑RB1↓,1,   Rho↑,1,   ROCK1↑,1,   ROS↑,9,   mt-ROS↑,4,   selectivity↑,6,   Shh↓,1,   SIRT1↑,1,   SIRT3↑,3,   Snail↓,2,   ac‑SOD2↓,1,   SOX2↓,1,   SOX4↓,1,   STAT3↓,1,   p‑STAT3↓,2,   mt-STAT3↓,1,   survivin↓,2,   TNF-α↓,1,   TumAuto↑,1,   TumCCA↑,4,   TumCD↑,1,   TumCI↓,2,   TumCMig↓,3,   TumCP↓,3,   tumCV↓,3,   TumMeta↓,2,   TumVol↓,2,   TumW↓,2,   Twist↓,2,   VEGF↓,3,   VEGFR2↓,1,   Vim↓,1,   Wnt↓,1,   Zeb1↓,1,   β-catenin/ZEB1↓,1,   β-catenin/ZEB1↑,1,  
Total Targets: 160

Results for Effect on Normal Cells:
AChE↓,1,   p‑Akt↑,1,   ALAT↓,1,   ALP↓,1,   AntiAg↑,1,   AntiAge↑,1,   antiOx↑,7,   AST↓,1,   ATP↑,1,   Aβ↓,2,   BAX↓,1,   BBB↑,4,   Bcl-2↑,1,   BioAv↓,2,   BioAv↑,1,   BMAL1↑,1,   Ca+2↓,1,   cardioP↑,5,   Casp3↓,2,   Catalase↑,2,   CHOP↓,1,   cognitive↑,2,   COX2↓,1,   CXCL12↑,1,   Cyt‑c↑,1,   Dose⇅,1,   ECAR↓,1,   eff↑,2,   ERK↓,1,   ERK↑,1,   Glycolysis↓,1,   Glycolysis↑,1,   GPx↑,1,   GRP78/BiP↓,1,   GSH↑,4,   GSK‐3β↓,1,   hepatoP↑,1,   HO-1↑,3,   IKKα↑,1,   IL10↓,1,   IL1β↓,1,   IL6↓,1,   Inflam↓,5,   Keap1↑,1,   LDH↓,1,   memory↑,3,   mitResp↑,2,   MMP↑,4,   motorD↑,2,   NADPH↓,1,   NADPH↑,1,   neuroP↑,6,   NF-kB↓,3,   NRF2↑,4,   OS↑,1,   OXPHOS↓,1,   OXPHOS↑,1,   P-gp↓,1,   PAR-2↓,1,   PGC-1α↑,4,   PGE2↓,1,   PPARα↑,1,   PPARγ↑,4,   p‑Rac1↓,1,   radioP↑,1,   RenoP↑,1,   Rho↓,1,   ROS↓,18,   ROS↑,1,   ROS⇅,1,   mt-ROS↓,2,   SIRT3↑,4,   SOD↓,1,   SOD↑,1,   SOD2↑,2,   p‑tau↓,1,   TNF-α↓,2,   toxicity↓,2,   toxicity↑,1,   toxicity↝,1,   toxicity∅,1,   Trx↑,1,   Trx1↑,1,   TrxR1↑,2,   β-catenin/ZEB1↑,1,  
Total Targets: 85

Scientific Paper Hit Count for: ROS, Reactive Oxygen Species
26 Honokiol
3 doxorubicin
1 Radiotherapy/Radiation
1 Rapamycin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:94  Target#:275  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page