condition found tbRes List
HNK, Honokiol: Click to Expand ⟱
Features:
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.
-considered to have antioxidant properties
-low oral bioavailability and difficulty in intravenous administration
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.

Pathways:
-Inhibit NF-κB activation
-Downregulate STAT3 signalin
-Inhibiting the PI3K/Akt pathway,
-Inhibition of mTOR
-Influences various MAPK cascades—including ERK, JNK, and p38
-Inhibition of EGFR
-Inhibiting Notch pathway (CSCs)
-GPx4 inhibit
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways
-Disrupt the mitochondrial membrane potential in cancer cells.
-Reported to increase ROS production in cancer cells
-Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.
- is well-known in the research community for its role in activating SIRT3

-Note half-life 40–60 minutes
BioAv
Pathways:
- induce ROS production in cancer cells, and typically lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ Prx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Glycolysis, Glycolysis: Click to Expand ⟱
Source:
Type:
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP.
In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect.
Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses.

Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis.

Pathways:
-GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO

Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/
Alkaloids:
-Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine

Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol.

Non-flavonoid phenolic compounds:
Curcumin, Resveratrol, Gossypol, Tannic acid.

Terpenoids:
-Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin.

Quinones:
-Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin

Others:
-Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene.


Scientific Papers found: Click to Expand⟱
2887- HNK,    Honokiol Restores Microglial Phagocytosis by Reversing Metabolic Reprogramming
- in-vitro, AD, BV2
*Glycolysis↑, switch from oxidative phosphorylation to anaerobic glycolysis and enhancing ATP production.
*ATP↑,
*ROS↓, honokiol reduced mitochondrial reactive oxygen species production and elevated mitochondrial membrane potential.
*MMP↑,
*OXPHOS↑, Honokiol enhanced ATP production by promoting mitochondrial OXPHOS in BV2 cell
*PPARα↑, Therefore, we argue that honokiol increases the expression of PPAR and PGC1, thus regulating a metabolic switch from glycolysis to OXPHOS
*PGC-1α↑,

2071- HNK,    Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient
- Review, Nor, HaCaT
*ROS↓, Magnolia officinalis (M. officinalis) extract significantly lowered the levels of ROS in senescent fibroblasts.
*antiOx↑, honokiol was demonstrated as a core ingredient of M. officinalis extract that exhibits antioxidant effects.
*AntiAge↑, new approaches to anti–aging treatments
*MMP↑, increases MMP
*ECAR↓, senescent fibroblasts treated with M. officinalis extract had lower ECAR values than those treated with DMSO, suggesting that M. officinalis treatment lowed glycolysis rate
*Glycolysis↓, honokiol, similar to M. officinalis, reduced the dependence of glycolysis as an energy source, indicating restoration of mitochondrial function by honokiol.
*PAR-2↓, downregulation of PAR–2 expression by M. officinalis may reduce skin pigmentation.
*CXCL12↑, upregulation of SDF–1 expression by M. officinalis may reduce skin pigmentation.
*BMAL1↑, activation of Bmal–1 expression by M. officinalis promote skin turnover.
*mt-ROS↓, compared to M. officinalis extract, honokiol at 1 and 10 μM was more effective in lowering mitochondrial ROS levels
*OXPHOS↓, Inhibition of oxidative phosphorylation and induction of a compensatory shift toward glycolysis resulted in lower compensatory glycolysis in honokiol–treated senescent fibroblasts

960- HNK,    Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231
OCR↑, which resulted in an increase in OCR and a decrease in ECAR, glucose uptake, lactic acid production and ATP production.
ECAR↓,
GlucoseCon↓, decreased glucose uptake, lactate production and ATP production in cancer cells.
lactateProd↓,
ATP↓,
Glycolysis↓,
Hif1a↓,
GLUT1↓,
HK2↓,
PDK1↓,
Apoptosis↑,
LDHA↓, upregulation of LDHA mediated by HIF-1α promoted the formation of lactic acid from pyruvate, which contributed to the acidification of the tumor microenvironment. Our experimental observation results showed that these changes were reversed by HNK


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   ATP↓,1,   ECAR↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,1,   Hif1a↓,1,   HK2↓,1,   lactateProd↓,1,   LDHA↓,1,   OCR↑,1,   PDK1↓,1,  
Total Targets: 12

Results for Effect on Normal Cells:
AntiAge↑,1,   antiOx↑,1,   ATP↑,1,   BMAL1↑,1,   CXCL12↑,1,   ECAR↓,1,   Glycolysis↓,1,   Glycolysis↑,1,   MMP↑,2,   OXPHOS↓,1,   OXPHOS↑,1,   PAR-2↓,1,   PGC-1α↑,1,   PPARα↑,1,   ROS↓,2,   mt-ROS↓,1,  
Total Targets: 16

Scientific Paper Hit Count for: Glycolysis, Glycolysis
3 Honokiol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:94  Target#:129  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page