Database Query Results : Lycopene, , JNK

Lyco, Lycopene: Click to Expand ⟱
Features:
Lycopene is a naturally occurring carotenoid found predominantly in tomatoes and other red fruits and vegetables.

Antioxidant Properties:
-Lycopene is a powerful antioxidant. It helps neutralize free radicals, which can reduce oxidative stress—a factor implicated in cancer development. Possible concern about interfering with chemotherapy and radiation therapy. However this review disagrees.
Inflammation Reduction:
-Some studies suggest that lycopene may help lower levels of inflammation, another process linked to cancer progression

At supraphysiological or extremely high concentrations, lycopene may have the potential to switch from an antioxidant to a prooxidant role
-The prooxidant effect of lycopene has been observed under conditions of high oxygen tension. In vitro studies have suggested that in environments with elevated oxygen levels, lycopene might promote rather than neutralize the production of reactive oxygen species (ROS).
-The presence of metal ions (such as iron or copper) in the environment can catalyze reactions where antioxidants, including lycopene, contribute to oxidative processes. These metals can interact with lycopene, potentially leading to the formation of radicals.

The mevalonate pathway produces cholesterol and a variety of isoprenoids, which are important for maintaining cell membrane integrity, protein prenylation, and other essential cellular functions.
-One of the primary enzymes in this pathway is HMG-CoA reductase (3-hydroxy-3-methylglutaryl-coenzyme A reductase), which is the target of statin drugs used for lowering cholesterol. Some studies suggest that lycopene might downregulate the activity of HMG-CoA reductase or other enzymes in the mevalonate pathway. By doing so, lycopene could potentially reduce the synthesis of cholesterol and isoprenoids that are necessary for rapid cell proliferation—an especially relevant aspect in cancer cells.

Lycopene typically used in a 100mg/day range for cancer (inhibition of the the Melavonate Pathway)
-also has antiplatelet aggregation capability.

-Note half-life 16–20 days.
BioAv Heat processing, especially when combined with a small amount of fat, significantly enhances lycopene’s bioaccessibility and absorption. (20% under optimal conditions)
Pathways:
- ROS usually goes down, but may go up or down depending on dose and environment. Lycopene may also be modified to be a "oxdiative product" which may change the behaviour.
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : EMT↓, MMPs↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : EZH2↓, P53↑, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


JNK, c-Jun N-terminal kinase (JNK): Click to Expand ⟱
Source:
Type:
JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. Janus signaling promotes cancer cell survival.
JNK, or c-Jun N-terminal kinase, is a member of the mitogen-activated protein kinase (MAPK) family. It plays a crucial role in various cellular processes, including cell proliferation, differentiation, and apoptosis (programmed cell death). JNK is activated in response to various stress signals, such as UV radiation, oxidative stress, and inflammatory cytokines.
JNK activation can promote apoptosis in cancer cells, acting as a tumor suppressor. However, in other contexts, it can promote cell survival and proliferation, contributing to tumor progression.

JNK is often unregulated in cancers, leading to increased cancer cell proliferation, survival, and resistance to apoptosis. This activation is typically associated with poor prognosis and aggressive tumor behavior.


Scientific Papers found: Click to Expand⟱
4228- Lyco,    A review for the pharmacological effect of lycopene in central nervous system disorders
- Review, AD, NA - Review, Park, NA
*cognitive↑, Lycopene also improves cognition and memory ability of rodents in different pathological conditions, such as diabetes, colchicine exposure, high-fat diet (HFD), and aging.
*memory↑,
*Inflam↓, inhibition of oxidative stress and neuroinflammation, inhibition of neuronal apoptosis, and restoration of mitochondrial function have been shown to mediate the neuroprotective effects of lycopene.
*Apoptosis↓,
*ROS↓,
*neuroP↑,
*NF-kB↓, inhibition of nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK), activation of the nuclear factor erythroid 2-related factor (Nrf2) and brain-derived neurotrophic factor (BDNF) signaling, and restoration of intracellular Ca2+ homeostasis,
*JNK↓,
*NRF2↑,
*BDNF↑,
*MDA↓, 8 weeks of lycopene treatment (5 mg/kg) has been shown to reverse malondialdehyde (MDA) increase and glutathione peroxidase (GSH-Px) decrease in serum in tau transgenic mice expressing P301 L mutation
*GPx↑,

4780- Lyco,    Potential inhibitory effect of lycopene on prostate cancer
- Review, Pca, NA
TumCP↓, Lycopene suppress the progression and proliferation
TumCCA↑, Lycopene has been found to effectively suppress the progression and proliferation, arrest in-cell cycle, and induce apoptosis of prostate cancer cells in both in-vivo and in-vitro conditions.
Apoptosis↑,
*neuroP↑, the neuro-protective effect of lycopene, mediates the signaling pathways, by inhibiting NF-κB (nuclear factor-κB) and JNK protein (c-Jun N-terminal kinase), and activating Nrf2 (Nuclear factor erythroid 2-related factor 2) and BDNF (
*NF-kB↓,
*JNK↓,
*NRF2↑,
*BDNF↑,
*Ca+2↝, as well as keeping homeostasis by restoring intracellular Ca2+
*antiOx↑, most powerful and natural antioxidants, and its role in preventing prostate cancer.
*AntiCan↑,
*Inflam↓, Anti-inflammatory properties of lycopene depends on time, and it has been found to be through the decrease of inflammatory cytokines (i.e. IL1, IL6, IL8 and tumor necrosis factor-α (TNF-α)
*IL1↓,
*IL6↓,
*IL8↓,
*TNF-α↓,
NF-kB↓, lycopene increased the expression of BCO2 enzyme in an androgen-sensitive cell line that prevented cancer cell proliferation and reduced the NF-κB activity
DNAdam↓, 20 and 50 μM doses of lycopene had an effect on PC3 and DU145 cell lines in inducing apoptosis with DNA damages, and preventing cell growth and colony formation
PSA↓, lycopene twice a day for 3 weeks, showed that lycopene decreases the risk and growth of prostate cancer cells, and also a decrease in the level of PSA,
P53↓, down-regulation of p53, Cyclin-D1, and Nrf-2 have occurred after the incubation of prostate cancer cells with the lycopene received patient’s sera in comparison with placebo
cycD1↓,
NRF2↓,
Akt2↓, treatment with lycopene in PC3 cancer cell lines was associated with down-regulation of AKT2 [
PPARγ↓, Another anti-proliferative effect of lycopene was done by increasing PPARγ-LXRα-ABCA1signaling molecules in protein and mRNA level

3278- Lyco,    Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells
- in-vitro, Colon, SW480
TNF-α↓, In cells treated with lycopene and LPS, the mRNA expression of TNF-α, IL-1β, IL-6, iNOS, and COX-2 were decreased significantly in a dose-dependent manner
IL1β↓,
IL6↓,
iNOS↓,
COX2↓,
PGE2↓, The concentrations of PGE2 and NO decreased according to the lycopene concentration
NO↓,
NF-kB↓, The protein expressions of NF-κB and JNK were decreased significantly according to lycopene concertation
JNK↓,
Inflam↓, Lycopene was found to have anti-inflammatory effects in a rat model
MPO↓, decreased myeloperoxidase (MPO) activity, as a marker of inflammation,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
Akt2↓,1,   Apoptosis↑,1,   COX2↓,1,   cycD1↓,1,   DNAdam↓,1,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   iNOS↓,1,   JNK↓,1,   MPO↓,1,   NF-kB↓,2,   NO↓,1,   NRF2↓,1,   P53↓,1,   PGE2↓,1,   PPARγ↓,1,   PSA↓,1,   TNF-α↓,1,   TumCCA↑,1,   TumCP↓,1,  
Total Targets: 21

Results for Effect on Normal Cells:
AntiCan↑,1,   antiOx↑,1,   Apoptosis↓,1,   BDNF↑,2,   Ca+2↝,1,   cognitive↑,1,   GPx↑,1,   IL1↓,1,   IL6↓,1,   IL8↓,1,   Inflam↓,2,   JNK↓,2,   MDA↓,1,   memory↑,1,   neuroP↑,2,   NF-kB↓,2,   NRF2↑,2,   ROS↓,1,   TNF-α↓,1,  
Total Targets: 19

Scientific Paper Hit Count for: JNK, c-Jun N-terminal kinase (JNK)
3 Lycopene
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:119  Target#:168  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page