condition found tbRes List
Lyco, Lycopene: Click to Expand ⟱
Features:
Lycopene is a naturally occurring carotenoid found predominantly in tomatoes and other red fruits and vegetables.

Antioxidant Properties:
-Lycopene is a powerful antioxidant. It helps neutralize free radicals, which can reduce oxidative stress—a factor implicated in cancer development. Possible concern about interfering with chemotherapy and radiation therapy. However this review disagrees.
Inflammation Reduction:
-Some studies suggest that lycopene may help lower levels of inflammation, another process linked to cancer progression

At supraphysiological or extremely high concentrations, lycopene may have the potential to switch from an antioxidant to a prooxidant role
-The prooxidant effect of lycopene has been observed under conditions of high oxygen tension. In vitro studies have suggested that in environments with elevated oxygen levels, lycopene might promote rather than neutralize the production of reactive oxygen species (ROS).
-The presence of metal ions (such as iron or copper) in the environment can catalyze reactions where antioxidants, including lycopene, contribute to oxidative processes. These metals can interact with lycopene, potentially leading to the formation of radicals.

The mevalonate pathway produces cholesterol and a variety of isoprenoids, which are important for maintaining cell membrane integrity, protein prenylation, and other essential cellular functions.
-One of the primary enzymes in this pathway is HMG-CoA reductase (3-hydroxy-3-methylglutaryl-coenzyme A reductase), which is the target of statin drugs used for lowering cholesterol. Some studies suggest that lycopene might downregulate the activity of HMG-CoA reductase or other enzymes in the mevalonate pathway. By doing so, lycopene could potentially reduce the synthesis of cholesterol and isoprenoids that are necessary for rapid cell proliferation—an especially relevant aspect in cancer cells.

Lycopene typically used in a 100mg/day range for cancer (inhibition of the the Melavonate Pathway)
-also has antiplatelet aggregation capability.

-Note half-life 16–20 days.
BioAv Heat processing, especially when combined with a small amount of fat, significantly enhances lycopene’s bioaccessibility and absorption. (20% under optimal conditions)
Pathways:
- ROS usually goes down, but may go up or down depending on dose and environment
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : EMT↓, MMPs↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : EZH2↓, P53, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Integrins↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


P53, P53-Guardian of the Genome: Click to Expand ⟱
Source: TCGA
Type: Proapototic
TP53 is the most commonly mutated gene in human cancer. TP53 is a gene that encodes for the p53 tumor suppressor protein ; TP73 (Chr.1p36.33) and TP63 (Chr.3q28) genes that encode transcription factors p73 and p63, respectively, are TP53 homologous structures.
p53 is a crucial tumor suppressor protein that plays a significant role in regulating the cell cycle, maintaining genomic stability, and preventing tumor formation. It is often referred to as the "guardian of the genome" due to its role in protecting cells from DNA damage and stress.
TP53 gene, which encodes the p53 protein, is one of the most frequently mutated genes in human cancers.
Overexpression of MDM2, an inhibitor of p53, can lead to decreased p53 activity even in the presence of wild-type p53.
In some cancers, particularly those with mutant p53, there may be an overexpression of the p53 protein.
Cancers with overexpression: Breast, lung, colorectal, overian, head and neck, Esophageal, bladder, pancreatic, and liver.


Scientific Papers found: Click to Expand⟱
3275- Lyco,    Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer
- Review, Var, NA
TumCCA↑, lycopene impedes the progress of the cell cycle from the G1 to the S phase, primarily by diminishing the cyclin D and cyclin E levels.
cycD1↓,
cycE↓,
CDK2↓, causes a subsequent inactivation of CDK4 and CDK2 through a reduced phosphorylation of Rb
CDK4↓,
P21↑, lycopene elevates CDK inhibitor, p21, and p53 (tumor suppressor) levels
P53↑,
GSK‐3β↓, Finally, GSK3β, p21, p27, Bad, caspase 9, and p53 (via Mdm2) are inactivated
p27↓,
Akt↓, lycopene inhibits AKT (protein kinase B) and mTOR
mTOR↓,
ROS↓, ability of lycopene to minimize ROS formation and mitigate oxidative stress
MMPs↓, lycopene may decrease the activity of metalloproteinases of the matrix and prevent SK-Hep1 cellular adhesion, invasion, and migration
TumCI↓,
TumCMig↓,
NF-kB↓, well-documented that lycopene inhibits NF-kB binding activity
*iNOS↓, They also claimed that the lycopene caused a decline in the LPS-induced protein and mRNA expression of iNOS,
*COX2↓, Lycopene can therefore decrease the gene expression of iNOS and COX-2 as a non-toxic agent via controlling pro-inflammatory genes
lipid-P↓, suppress gastric cancer by multimodal mechanisms of reduction in lipid peroxidation, elevation in the levels of antioxidants, and enhanced GSH
GSH↑,
NRF2↑, Reportedly, lycopene is known to “upregulate” this ARE system via Nrf2 in vitro (HepG2 and MCF-7 cells)

3277- Lyco,    Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent
- Review, Var, NA
antiOx↑, lycopene provides a strong antioxidant activity that is 100 times more effective than α-tocopherol and more than double effective that of β-carotene
TumCP↓, In vivo and in vitro experiments have demonstrated that lycopene at near physiological levels (0.5−2 μM) could inhibit cancer cell proliferation [[22], [23], [24]], induce apoptosis [[25], [26], [27]], and suppress metastasis [
Apoptosis↑,
TumMeta↑,
ChemoSen↑, lycopene can increase the effect of anti-cancer drugs (including adriamycin, cisplatin, docetaxel and paclitaxel) on cancer cell growth and reduce tumour size
BioAv↓, low water solubility and bioavailability of lycopene
Dose↝, The concentration of lycopene in plasma (daily intake of 10 mg lycopene) is approximately 0.52−0.6 μM
BioAv↓, significant decrease in lycopene bioavailability in the elderly
BioAv↑, oils and fats favours the bioavailability of lycopene [80], while large molecules such as pectin can hinder the absorption of lycopene in the small intestine due to their action on lipids and bile salt molecules
SOD↑, GC: 50−150 mg/kg BW/day ↑SOD, CAT, GPx ↑IL-2, IL-4, IL-10, TNF-α ↑IgA, IgG, IgM ↓IL-6
Catalase↑,
GPx↑,
IL2↑, lycopene treatment significantly enhanced blood IL-2, IL-4, IL-10, TNF-α levels and reduced IL-6 level in a dose-dependent manner.
IL4↑,
IL1↑,
TNF-α↑,
GSH↑, GC: ↑GSH, GPx, GST, GR
GPx↑,
GSTA1↑,
GSR↑,
PPARγ↑, ↑GPx, SOD, MDA ↑PPARγ, caspase-3 ↓NF-κB, COX-2
Casp3↑,
NF-kB↓,
COX2↓,
Bcl-2↑, AGS cells Lycopene 5 μM ↑Bcl-2 ↓Bax, Bax/Bcl-2, p53 ↓Chk1, Chk2, γ-H2AX, DNA damage ↓ROS Phase arrest
BAX↓,
P53↓,
CHK1↓,
Chk2↓,
γH2AX↓,
DNAdam↓,
ROS↓,
P21↑, CRC: ↑p21 ↓PCNA, β-catenin ↓COX-2, PGE2, ERK1/2 phosphorylated
PCNA↓,
β-catenin/ZEB1↓,
PGE2↓,
ERK↓,
cMyc↓, AGS cells: ↓Wnt-1, c-Myc, cyclin E ↓Jak1/Stat3, Wnt/β-catenin alteration ↓ROS
cycE↓,
JAK1↓,
STAT3↓,
SIRT1↑, Huh7: ↑SIRT1 ↓Cells growth ↑PARP cleavage ↓Cyclin D1, TNFα, IL-6, NF-κB, p65, STAT3, Akt activation ↓Tumour multiplicity, volume
cl‑PARP↑,
cycD1↓,
TNF-α↓,
IL6↓,
p65↓,
MMP2↓, SK-Hep1 human hepatoma cells Lycopene 5, 10 μM ↓MMP-2, MMP-9 ↓
MMP9↓,
Wnt↓, AGS cells Lycopene 0.5 μM, 1 μM ↓Wnt-1, c-Myc, cyclin E ↓Jak1/Stat3, Wnt/β-catenin alteration ↓ROS

1715- Lyco,    Pro-oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence
- Review, Var, NA
antiOx↑, Carotenoids are well known for their potent antioxidant function in the cellular system.
ROS↑, However, in cancer cells with an innately high level of intracellular reactive oxygen species (ROS), carotenoids may act as potent pro-oxidant molecules and trigger ROS-mediated apoptosis
ChemoSen↑, when carotenoids are delivered with ROS-inducing cytotoxic drugs, they can minimize the adverse effects of these drugs on normal cells by acting as antioxidants without interfering with their cytotoxic effects on cancer cells as pro-oxidants
selectivity↑, In cancer cells with innately high intracellular ROS levels, carotenoids may act as pro-oxidants and trigger ROS-mediated apoptosis of cancer cells.
eff↓, However, under high oxygen tension conditions (e.g., in the lungs of smokers), β-carotene shows tumor-promoting effects.
Casp3↑,
Casp7↑,
Casp9↑,
P53↑,
BAX↑,
DNAdam↑,
mtDam↑, mitochondrial dysfunction
eff↑, Astaxanthin co-treatment with β-carotene and lutein (equimolar 5 µM each)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   antiOx↑,2,   Apoptosis↑,1,   BAX↓,1,   BAX↑,1,   Bcl-2↑,1,   BioAv↓,2,   BioAv↑,1,   Casp3↑,2,   Casp7↑,1,   Casp9↑,1,   Catalase↑,1,   CDK2↓,1,   CDK4↓,1,   ChemoSen↑,2,   CHK1↓,1,   Chk2↓,1,   cMyc↓,1,   COX2↓,1,   cycD1↓,2,   cycE↓,2,   DNAdam↓,1,   DNAdam↑,1,   Dose↝,1,   eff↓,1,   eff↑,1,   ERK↓,1,   GPx↑,2,   GSH↑,2,   GSK‐3β↓,1,   GSR↑,1,   GSTA1↑,1,   IL1↑,1,   IL2↑,1,   IL4↑,1,   IL6↓,1,   JAK1↓,1,   lipid-P↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mtDam↑,1,   mTOR↓,1,   NF-kB↓,2,   NRF2↑,1,   P21↑,2,   p27↓,1,   P53↓,1,   P53↑,2,   p65↓,1,   cl‑PARP↑,1,   PCNA↓,1,   PGE2↓,1,   PPARγ↑,1,   ROS↓,2,   ROS↑,1,   selectivity↑,1,   SIRT1↑,1,   SOD↑,1,   STAT3↓,1,   TNF-α↓,1,   TNF-α↑,1,   TumCCA↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   TumMeta↑,1,   Wnt↓,1,   β-catenin/ZEB1↓,1,   γH2AX↓,1,  
Total Targets: 70

Results for Effect on Normal Cells:
COX2↓,1,   iNOS↓,1,  
Total Targets: 2

Scientific Paper Hit Count for: P53, P53-Guardian of the Genome
3 Lycopene
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:119  Target#:236  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page